
	

	 	
To	What	Extent	Should	Computer-
Assisted	Proofs	Be	Trusted?	
Extended	Project	
	

Jack	Morrison	|	1189	

Supervisor:	Mr	M	Dowding	|	Westcliff	High	School	for	Boys|	16635	

	 2	

Table	of	Contents	

Abstract	..	3	

Introduction:	What	is	a	proof?	...	4	
Types	of	proofs	...	5	

Direct	proof	..	5	
Proof	by	mathematical	induction	...	5	
Proof	by	contraposition	..	5	
Proof	by	contradiction	..	5	
Proof	by	exhaustion	...	6	

What	is	a	computer-assisted	proof?	..	7	
What	is	considered	a	‘complete’	proof?	..	7	

Case	Studies	..	9	
Four	Colour	Theorem	..	9	
Kepler	Conjecture	...	10	

Why	is	there	controversy	over	computer-assisted	proofs?	..	11	
Lack	of	logical	deduction	...	11	
Limits	of	human	verification	...	11	
Errors	in	computer	hardware	and	software	..	12	

How	can	problems	with	computer	assisted	proofs	be	overcome?	14	
Proof	Assistants	..	14	
Peer	Review	...	15	
Reliable	hardware	and	software	...	15	

Conclusion:	The	future	of	proofs	...	16	

Works	Cited	...	17	
	

	 	

	 3	

Abstract	

Computer-assisted	proofs	have	been	a	controversial	topic	of	mathematics	since	the	use	of	a	computer	
program	to	verify	the	Four	Colour	theorem	in	1976	[1].	Some	mathematicians	have	suggested	that	
computer-assisted	proofs	are	not	‘real’	proofs,	because	they	do	not	always	involve	logical	deduction.	
They	are	also	not	always	verifiable	by	humans,	and	can	be	prone	to	error,	and	this	leads	to	people	
doubting	 their	 validity.	 It	 is	 the	 intention	 of	 this	 study	 to	 consider	 whether	 the	 use	 of	 computer	
programs	 to	 prove	 a	 mathematical	 problem’s	 solution	 are	 as	 effective	 as	 deductive	 proofs.	 It	
investigates	the	types	of	proofs	currently	accepted	in	the	mathematical	community,	and	compares	
these	 to	 computer	 assisted	 proofs.	 Also,	 the	 Four	 colour	 theorem	 and	 Kepler	 conjecture	 are	
investigated,	 as	 both	 were	 proved	 with	 the	 assistance	 of	 computers.	 This	 study	 concludes	 that	
computer	 assisted	 proofs	 are	 becoming	 increasingly	 more	 reliable,	 and	 will	 soon	 be	 regarded	 as	
equally	mathematically	valid	as	deductive	proofs.	Currently	however,	there	are	still	some	reliability	
issues,	 such	 as	 hardware	 and	 software	 reliability,	 lack	 of	 human	 verification	 and	 lack	 of	 logical	
deduction,	 although	 these	 problems	 are	 being	 addressed	 by	 using	 more	 reliable	 hardware	 and	
software,	using	proof	assistants	to	verify	proofs,	and	using	them	for	peer	reviewing.	

	 	

	 4	

Introduction:	What	is	a	proof?	

One	popular	 type	of	proof	 is	 an	Euclidian	Proof,	which	 consist	of	 four	main	elements;	definitions,	
axioms,	propositions	and	mathematical	proofs	of	the	propositions.	[2]	

Firstly,	there	are	definitions.	These	explain	mathematical	terms	and	ideas,	for	example,	the	definition	
of	a	natural	number	is:		

“0”	is	a	natural	number.	

Each	natural	number	has	a	unique	successor,	such	that:	

the	successor	of	a	natural	number	is	also	a	natural	number;	

distinct	natural	numbers	have	distinct	successors;	

no	natural	number	is	succeeded	by	“0”.	

Nothing	else	is	a	natural	number.	

Proof	I	[3]	

This	definition	 covers	all	 of	 the	 conditions	of	 a	natural	number,	 and	 is	 a	 special	 type	of	definition	
known	as	an	inductive	definition,	because	it	defines	a	 ‘natural	number’	 in	terms	of	 itself,	and	so	is	
recursive.	Not	all	definitions	are	recursive,	for	example,	the	definition	of	isomorphic	graphs	is	‘Graphs	
that	show	the	same	information,	but	are	drawn	differently’,	which	is	just	a	statement	[4].	

The	next	elements	are	axioms,	which	are	statements	that	are	assumed	to	already	be	true,	for	example	
commutative	law.	This	is	where	the	order	of	the	addends	does	not	change	the	value	of	the	sum	in	
addition,	e.g.	𝑎 + 𝑏 = 𝑏 + 𝑎,	whereas	in	subtraction,	the	order	of	the	minuend	and	the	subtrahend	
will	result	in	varying	differences,	e.g.	𝑎 − 𝑏 ≠ 𝑏 − 𝑎.	The	axioms	in	Proof	I	are	known	as	the	Peano	
axioms	 [3].	 These	 are	 the	 mathematical	 statements	 which	 are	 used	 to	 prove	 a	 set	 is	 of	 natural	
numbers.	They	only	use	axioms	which	are	already	assumed	to	be	true,	for	example	one	axiom	states	
that	‘distinct	natural	numbers	have	distinct	successors’	by	stating	that:	

∀	𝑥, 𝑦 ∈ ℕ, 𝑖𝑓	𝑆 𝑥 = 𝑆 𝑦 , 𝑡ℎ𝑒𝑛	𝑥 = 𝑦	

	as	these	axioms	can	be	assumed.		[5]	

The	third	element	is	a	proposition,	which	is	a	declaration	that	can	be	either	true	of	false,	for	example,	
‘The	product	of	two	even	integers	is	always	even’.		

To	show	if	a	proposition	is	true	or	false,	we	use	mathematical	proofs.	These	use	axioms	and	definitions	
in	order	to	prove	the	proposition.	The	proof	for	the	proposition	above	could	be:		

Consider	two	even	integers,	a	and	b.	

Even	integers	can	be	written	as	𝑎 = 2𝑥	and	𝑏 = 2𝑦,	where	𝑥	and	𝑦	are	integers,	because	all	
even	numbers	have	a	factor	of	2	(this	is	an	axiom).		

The	product	of	𝑎𝑏 = 4𝑥𝑦 = 2(2𝑥𝑦)	and	so	as	it	has	2	as	a	factor,	it	is	also	even.		

This	proves	that	the	product	of	any	two	even	integers	is	even.	

This	proof	can	also	be	written	as	follows:	

	

	 5	

𝑎, 𝑏	𝜖	ℤ	
𝑎 = 2𝑥	
𝑏 = 2𝑦	

∴ 𝑎𝑏 = 4𝑥𝑦	
= 2(2𝑥𝑦)	

	

Proof	II	

These	are	the	four	elements	to	an	Euclidian	proof.	This	is	not	the	only	structure	of	a	proof,	because	it	
cannot	be	used	to	prove	every	problem;	however,	it	is	quite	widely	used.		

Types	of	proofs	
There	are	many	types	of	proof,	however	some	of	the	most	commonly	used	are;	direct	proofs,	proofs	
by	mathematical	induction,	proofs	by	contraposition,	proofs	by	contradiction,	proofs	by	exhaustion	
and	computer-assisted	proofs.	

Direct	proof	
Direct	proofs	are	the	simplest	type	of	proof,	and	they	use	the	Euclidian	elements	previously	discussed.	
The	proof	in	the	section	above	is	an	example	of	a	direct	proof.	These	are	the	most	commonly	used	
proofs,	because	their	structure	is	very	simple,	as	they	just	use	existing	axioms	and	theorems,	and	so	
do	make	any	other	assumptions.	

Proof	by	mathematical	induction	
Proof	by	mathematical	 induction	has	a	starting	case	to	be	proved,	usually	referred	to	as	the	‘base’	
case.	From	here,	the	next	case	is	proved	using	an	induction	rule.	The	first	case	is	usually	algebraically	
represented	by	𝑛,	and	the	next	case	𝑛 + 1.	Once	the	induction	rule	is	proved,	the	proof	is	true	from	a	
starting	case	which	can	be	proved,	usually	1.	An	example	of	this	is	given	as	proof	I	on	the	previous	
page.	This	proof	is	most	commonly	used	with	natural	numbers,	and	so	concludes	‘this	is	true	for	all	
natural	numbers’	or	 ‘∴ 	𝑡𝑟𝑢𝑒	∀	𝑛 ∈ ℕ’.	 It	can	also	be	used	 in	 reverse,	and	so	can	be	proved	 for	all	
negative	integers,	for	example	by	proving	–1	as	the	base	case,	and	them	proving	true	for	𝑛	and	𝑛 − 1.		

Proof	by	contraposition	
Proof	by	contraposition	is,	simply	put;	

if	P	⟹			Q,	then	¬Q	⟹			¬P. 	

This	means	that	if	P	implies	Q,	then	not	Q	implies	not	P.	An	example	of	this	is	‘If	something	is	a	carrot,	
then	it	is	orange’.	The	contrapositive	of	this	is	‘If	something	is	not	orange,	then	it	is	not	a	carrot’.	These	
statements	are	contrapositives,	and	the	same	practice	can	be	used	in	mathematical	proof,	for	example	
if	a	number	is	two,	then	it	is	even,	and	so	if	a	number	is	not	even,	then	it	is	not	two.	[2]	

Proof	by	contradiction	
Proof	by	contradiction	works	by	assuming	the	opposite	of	a	statement	is	true,	and	then	tries	to	prove	
that.	 Inevitably,	 a	 contradiction	 occurs,	 and	 so	 the	 assumed	 statement	must	 be	 false,	 and	 so	 the	
original	statement	is	true.	An	example	is	that	there	is	no	‘smallest’	rational	number	greater	than	zero.	
The	proof	is	as	follows:	

Assume	there	is	a	smallest	rational	number,	𝑟.	

	 ?
@
	is	also	a	rational	number	which	is	greater	than	zero,	but	now	also	smaller	than	𝑟.	

	 6	

This	means	there	is	a	contradiction	to	our	original	assumption,	and	so	that	assumption	must	
be	false.	

Therefore,	there	is	no	smallest	rational	number	which	is	greater	than	zero.	

Proof	III	[6]	

Proof	by	exhaustion	
Proof	by	exhaustion	is	where	a	proposition	is	split	up	into	a	finite	number	of	cases,	and	then	all	of	
these	cases	are	individually	proved.	This	is	known	as	‘brute	force’,	as	every	possibility	is	checked.	There	
can	potentially	be	a	large	number	of	cases	that	need	to	be	proved,	and	therefore	computers	are	useful	
for	proof	by	exhaustion,	because	they	can	do	lots	of	calculations	at	a	fast	speed.	

An	example	of	a	proof	by	exhaustion	is	that	every	perfect	cube	is	a	multiple	of	9,	one	more	than	a	
multiple	of	9,	or	one	less	than	a	multiple	of	9.	The	proof	would	consider	3	cases,	which	are;	multiples	
of	3,	one	more	than	a	multiple	of	3,	and	one	less	than	a	multiple	of	3.	

Case	1:		

𝑛 = 3𝑦		
	

This	means	that	𝑛	is	a	multiple	of	three	

	𝑛B = 27𝑦B = 9×3𝑦B			
	

and	therefore	𝑛B	is	divisible	by	nine.	

Case	2:	

𝑛 = 3𝑦 + 1		
	

This	means	that	𝑛	is	one	more	than	a	multiple	of	three	

𝑛B = 27𝑦B + 27𝑦@ + 9𝑦 + 1		
						= 9×(3𝑦B + 3𝑦@ + 𝑦) + 1			
	

and	therefore	𝑛B	is	one	more	than	a	multiple	of	nine.	

Case	3:	

𝑛 = 3𝑦 − 1		
	

This	means	that	𝑛	is	one	less	than	a	multiple	of	three	

𝑛B = 27 − 27𝑦@ + 9𝑦 − 1		
						= 9×(3𝑦B − 3𝑦@ + 𝑦) − 1			
	

and	therefore	𝑛B	is	one	less	than	a	multiple	of	nine.	

Proof	IV	[7]	

These	three	cases	show	all	of	the	possible	combinations	which	could	be	tested,	as	every	number	is	
either	a	multiple	of	three,	one	more	than	a	multiple	of	three,	or	one	less	than	a	multiple	of	three,	and	
therefore	 every	 case	 is	 represented.	 This	 is	 a	 common	 theme	 in	 proofs	 by	 exhaustion,	 because	
obviously	 not	 every	 value	 can	 be	 tested,	 because	 there	 are	 an	 infinite	 amount	 of	 numbers,	 and	
therefore	if	a	set	of	cases	can	be	created	which	represent	every	possible	combination,	then	a	proof	
by	exhaustion	is	feasible.	

Saying	this,	there	may	be	a	case,	such	as	the	Four	Colour	Theorem,	where	there	are	hundreds	or	even	
thousands	of	cases	which	need	to	be	proved,	and	to	find	these	cases	there	are	hundreds	of	constraints	
which	need	to	be	considered.	This	means	that	a	proof	by	exhaustion	 is	 feasible,	but	only	with	the	
assistance	 of	 a	 computer,	 as	 to	 prove	 something	 of	 this	 magnitude	 by	 hand	 would	 be	 next	 to	
impossible	due	to	the	time	and	processing	power	required.	

	 7	

What	is	a	computer-assisted	proof?	
Computer-assisted	proofs	started	to	be	introduced	during	the	20th	century,	as	computers	started	to	
advance,	and	allowed	calculations	to	be	computed	by	programs	a	lot	faster	that	a	human	was	able	to.	
They	are	most	commonly	used	with	proofs	by	exhaustion,	due	to	the	fact	that	they	can	complete	lots	
more	 calculations	per	 second	 than	a	human	 can,	 and	 therefore	 can	prove	 lots	of	 cases	 in	 a	 short	
amount	of	time,	which	are	the	bases	of	proofs	by	exhaustion.	

An	example	for	a	structure	of	a	computer-assisted	proof	may	be:	

1. The	problem	is	condensed	into	a	finite	number	of	cases,	which	can	all	be	individually	proved.	
2. An	algorithm	is	created	which	will	analyse	the	cases	individually	and	will	return	if	they	satisfy	

the	conditions	of	the	original	problem.	
3. The	algorithm	is	executed	on	all	of	the	cases	to	prove	that	they	are	true.	

This	shows	that	the	computer	is	mainly	used	to	compute	the	large	number	of	cases,	because	if	only	a	
small	group	of	cases	needed	to	be	proved	this	way,	then	a	human	could	do	it	fairly	quickly,	and	so	the	
use	of	a	computer	would	be	redundant.	[8]	

What	is	considered	a	‘complete’	proof?	
Some	mathematicians	believe	that	proofs	by	exhaustion	should	not	be	considered	as	complete	proofs	
because	they	are	not	elegant,	and	there	is	the	possibility	that	if	there	are	a	large	number	of	cases,	
then	there	may	not	be	a	mathematical	connection	between	them,	and	 it	may	 just	be	coincidence.	
They	 prefer	 other	 methods	 of	 proof,	 including	 some	 which	 are	 explained	 above,	 like	 proof	 by	
mathematical	 induction,	 because	 they	 are	more	 elegant,	 and	 show	 the	 reason	 behind	 a	 theorem	
which	is	trying	to	be	proved.	[7]	

Mathematicians	 therefore	 extend	 this	 opinion	 to	 computer	 assisted	 proofs,	 because	 they	 are	
essentially	proofs	by	exhaustion	with	many	more	cases,	and	so	require	the	assistance	of	a	computer	
to	process	these	cases.	They	gave	the	opinion	that	it	extended	the	use	of	empirical	evidence,	which	is	
used	in	many	physical	sciences,	into	mathematics,	where	it	should	not	be,	as	it	gives	the	potential	for	
the	proof	to	be	wrong.	[2]	

However,	 the	majority,	 if	not	all	mathematicians	would	agree	that	a	proof	with	a	small	amount	of	
cases	to	be	proved	is	undoubtedly	true.	For	example,	the	following	proof	has	just	two	parts;	proofs	
relating	to	odd	numbers	and	to	even	numbers.	It	is	still	a	proof	by	exhaustion,	as	it	proves	a	collection	
of	cases,	but	because	the	cases	can	be	proved	by	a	human	simply	then	they	are	a	valid	proof.	

The	conjecture	is	that	if	a	and	b	are	integers,	the	product	ab	is	odd	if	and	only	if	a	and	b	are	both	odd.	
The	proof	is	as	follows:	

Part	1:	

If	a	and	b	are	both	odd,	then	ab	is	odd.	

𝑎, 𝑏, 𝑛,𝑚 ∈ ℤ	
	𝑎 = 2𝑛 + 1	
𝑏 = 2𝑚 + 1	
𝑎𝑏 = 2𝑛 + 1 2𝑚 + 1 	

= 4𝑛𝑚 + 2𝑛 + 2𝑚 + 1	
= 2 2𝑛𝑚 + 𝑛 + 𝑚 + 1	

∴ 𝑎𝑏	𝑖𝑠	𝑜𝑑𝑑	

Part	2:	

	 8	

If	ab	is	odd,	then	a	and	b	are	both	odd.	This	part	is	required	as	the	conjecture	stated	‘if	and	only	if’,	
which	means	that	both	conditions	must	be	true	for	the	conjecture	to	be	proved,	so	the	proof	needs	
to	be	done	both	ways	around.	

𝑎𝑏	𝑖𝑠	𝑜𝑑𝑑	
𝑎𝑠𝑠𝑢𝑚𝑒	𝑎	𝑎𝑛𝑑	𝑏	𝑎𝑟𝑒	𝑛𝑜𝑡	𝑏𝑜𝑡ℎ	𝑜𝑑𝑑	
𝑪𝒂𝒔𝒆	𝟏:	
𝑎 = 2𝑛	
𝑏 = 2𝑚 + 1	
𝑎𝑏 = 2𝑛 2𝑚 + 1 	

= 4𝑛𝑚 + 2𝑛	
= 2 2𝑛𝑚 + 𝑛 	

∴ 𝑎𝑏	𝑖𝑠	𝑒𝑣𝑒𝑛 ∴ 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛	
	
𝑪𝒂𝒔𝒆	𝟐:	
𝑎 = 2𝑛	
𝑏 = 2𝑚	
𝑎𝑏 = 2𝑛 2𝑚 	

= 2 2𝑛𝑚 	
∴ 𝑎𝑏	𝑖𝑠	𝑒𝑣𝑒𝑛	 ∴ 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛	

Both	cases	are	contradictions,	so	a	and	b	must	both	be	odd.	

By	part	1	and	part	2,	the	original	conjecture	has	been	proven.	

Proof	V	[9]	

This	proof	is	considered	complete	by	mathematicians	because	it	can	be	split	into	two	cases;	a	and	b	
are	even,	or	a	is	even	and	b	is	odd,	and	these	cases	can	be	proved	by	contradiction	in	a	few	lines.	This	
means	that	the	proof	can	be	easily	checked	for	errors,	and	therefore	they	can	be	sure	that	it	is	correct.	
The	use	of	proof	by	exhaustion	here	is	not	questioned	by	mathematicians,	presumably	because	the	
number	of	cases	can	be	counted	and	proved	easily	by	a	human.	

However,	many	argue	that	increasing	the	number	of	cases	makes	the	proof	invalid,	because	there	is	
a	higher	chance	of	an	error	occurring	in	the	proof.	While	this	may	be	true,	it	does	not	mean	that	it	is	
not	possible	to	use	computers	to	help	prove	conjectures	which	would	take	too	long	to	be	proved	by	
humans	alone.	This	is	because	if	the	computer	which	is	being	used	can	be	thoroughly	checked	to	make	
sure	that	it	does	not	have	any	errors,	then	there	is	no	difference	to	whether	a	human	solves	the	cases	
in	a	proof	by	exhaustion	than	there	is	if	a	computer	does	it.	

	 	

	 9	

Case	Studies	

Four	Colour	Theorem	

An	example	of	a	computer-assisted	proof	is	the	Four	Colour	Theorem.	Some	people	regard	this	as	the	
first	 theorem	 to	be	proved	by	a	 computer,	 as	 in	1976	Kenneth	Appel	 and	Wolfgang	Haken	of	 the	
University	of	Illinois	managed	to	reduce	the	problem	down	so	that	it	could	be	proved	on	a	computer.	
I	will	look	at	what	this	theorem	is,	how	it	was	originally	proved	by	Appel	and	Haken,	and	how	since	
then,	others	have	found	more	efficient	and	more	reliable	ways	of	proving	the	theorem.	

The	Four	Colour	Theorem	was	originally	proposed	 in	1852	by	South	African	mathematician	Francis	
Guthrie	[10].	He	mentioned	it	to	his	brother,	Frederick	Guthrie,	as	he	said	‘the	greatest	number	of	
colours	to	be	used	in	colouring	a	map	so	as	to	avoid	identity	of	colour	in	lineally	contiguous	districts	is	
four’	[11].	Frederick	was	studying	at	University	College	London,	and	so	asked	his	brother	is	he	could	
show	this	proof	to	one	of	his	professors,	Augustus	De	Morgan.	After	De	Morgan	saw	Francis’	‘proof’,	
he	confirmed	that	 is	was	new	to	him,	and	when	showing	 it	 to	subsequent	students	referenced	his	
former	student	Francis	Guthrie	as	the	person	with	the	original	idea.		

The	nature	to	Guthrie’s	proof	is	unknown,	however	it	is	most	likely	incorrect	because	currently	the	
theorem’s	proof	requires	a	computer,	and	in	1852	this	would	not	have	been	possible.	Despite	this,	the	
theorem’s	origin	can	still	be	traced	back	to	then,	as	De	Morgan	describes	the	problem	in	a	letter	to	Sir	
William	Rowan	Hamilton	dated	23rd	October	1852.	He	stated	in	this	letter:	

A	student	of	mine	asked	me	to	day	to	give	him	a	reason	for	a	fact	which	I	did	not	know	was	a	
fact	–	and	do	not	yet.	He	says	that	if	a	figure	can	be	any	how	divided	and	the	compartments	
differently	coloured	so	that	figures	with	any	portion	of	common	boundary	line	are	differently	
coloured	–	four	colours	may	be	wanted,	but	no	more.	[11]	

This	is	where	the	Four	Colour	Theorem	was	born,	and	for	the	next	century,	people	would	still	be	trying	
to	find	a	proof	for	this.		

A	simplified	version	of	the	Four	Colour	Theorem	is:	

Can	every	map	be	coloured	with	at	most	four	colours	in	such	a	say	that	neighbouring	countries	are	
coloured	differently?	[11]	

A	map	consists	of	many	regions.	The	boundary	of	these	regions	are	made	of	boundary	lines.	These	
boundary	lines	meet	at	places	called	meeting	points.	For	countries	to	be	neighbouring,	they	need	to	
share	a	boundary	line.	If	countries	meet	at	a	point	only,	then	they	are	not	classed	as	neighbouring.	
[11]	

After	a	century’s	worth	of	mathematicians	working	on	the	problem,	there	was	lots	of	progress	made,	
however,	nobody	 found	a	 formal	proof	 for	 the	 theorem.	One	of	 the	methods	attempted	 included	
proof	by	induction,	mentioned	earlier,	however,	there	were	counter-examples	to	the	(n+1)th		term.	
After	this,	most	mathematicians	decided	the	most	logical	way	to	prove	the	theorem	was	to	find	a	set	
of	reducible	configurations	so	that	these	could	be	proved.		

In	 July	 1976,	 124	 years	 after	 the	 problem	was	 first	 posed,	 Appel	 and	 Haken	 published	 the	 paper	
showing	how	they	used	a	computer	to	prove	the	1482	reducible	configurations	which	allowed	them	
to	prove	the	four	colour	theorem.	Later,	they	managed	to	reduce	this	further	to	1405	combinations,	
however,	reducing	the	number	of	combinations	was	not	their	main	priority	because	it	if	the	smaller	
number	of	priorities	all	 took	a	 longer	 time	 individually,	 then	 the	overall	processing	 time	would	be	

	 10	

increased.	This	is	why	Appel	said	“If	one	configuration	replaces	twelve,	but	one	configuration	takes	
two	hours	and	the	twelve	take	five	minutes,	that	doesn’t	make	sense”.	[11]	

The	reactions	to	publication	of	the	paper	was	mixed;	some	people	greeted	it	with	scepticism,	saying	
that	there	had	been	many	other	‘proofs’	in	the	last	century	which	turned	out	to	be	flawed.	Others	said	
that	 they	were	disappointed	 that	 a	 theorem	which	was	over	 a	 century	old	had	been	proved	by	 a	
method	with	no	mathematical	deduction,	and	some	people	even	went	as	far	as	to	say	that	this	meant	
that	it	could	not	be	classed	as	a	proof.	

Donald	 Albers,	 who	 reported	 on	 the	 joint	 American	 Mathematical	 Society	 and	 Mathematical	
Association	of	America	summer	meeting	at	the	University	of	Toronto	in	August	1976,	commented	on	
Haken’s	presentation	of	his	solution	to	the	theorem.	He	concluded	that	many	of	the	mathematicians	
who	attended	the	meeting	did	not	want	to	accept	the	proof,	and	were	cautious	that	there	may	be	an	
error	due	to	the	length	of	the	proof	and	the	amount	of	processing	time	that	was	required.	However,	
some	agreed	that	the	proof	was	valid,	and	therefore	this	caused	the	community	to	become	divided	
on	what	the	definition	of	a	proof	was.	This	was	one	of	the	first	instances	of	this	question	appearing,	
and	the	controversy	over	computer-assisted	proofs	has	become	more	widespread	ever	since.	[11]		

Kepler	Conjecture	

Some	mathematicians	argue	that	because	computational	proofs	are	often	extremely	long,	that	this	
means	people	will	just	assume	that	they	are	correct,	because	people	are	less	willing	to	look	over	them	
and	check	that	they	are	correct.	An	example	of	this	is	the	Kepler	Conjecture,	which	is	described	below.	

The	 Kepler	 Conjecture	 is	 a	 mathematical	 conjecture	 about	 packing	 spheres	 in	 three-dimensional	
Euclidian	space,	originally	suggested	by	Johannes	Kepler	in	1611.	According	to	New	Scientist,	it	can	be	
simplified	to:	“What	is	the	best	way	to	stack	a	collection	of	spherical	objects?”	[12].	

In	1998,	Thomas	Hales,	from	the	university	of	Pittsburgh,	presented	a	proof	to	Kepler’s	original	theory,	
that	the	most	efficient	way	to	stack	spheres	was	in	a	pyramid	arrangement.	The	proof	worked	because	
although	there	were	infinite	possibilities	to	arrange	the	spheres,	they	all	followed	one	of	thousands	
of	 themes,	and	 therefore	Hales	created	a	 linear	programming	problem,	and	using	around	100,000	
linear	programming	problems,	it	allowed	him	to	create	a	problem	which	could	be	solved	with	the	help	
of	a	computer.	

The	proof	which	Hales	produced	was	over	300	pages	long,	and	therefore	some	people	did	not	accept	
that	it	was	a	formal	proof,	because	it	took	12	people	around	4	years	to	check	for	errors,	and	even	after	
this,	the	reviewers	were	only	99%	certain	that	the	proof	was	correct.	[13]	

Even	though	the	proof	was	in	theory	correct,	the	length	caused	many	people	to	doubt	whether	it	was	
completely	correct,	because	 the	extended	 length	 increased	 the	possibility	of	an	error.	This	caused	
Hales	to	start	the	Flyspeck	project	in	2003,	with	which	he	aimed	to	verify	his	proof	so	that	it	was	not	
questioned	by	the	mathematical	community.	Using	 Isabelle	and	HOL	Light,	which	are	 formal	proof	
software	assistants,	Hales	and	his	team	managed	to	prove	that	their	original	proof	had	been	verified	
by	these	programs,	and	so	it	was	in	fact	correct.	This	revelation	came	on	Sunday	10th	August	2014,	
when	Hales	and	the	rest	of	the	Flyspeck	team	said	“This	technology	cuts	the	mathematical	referees	
out	of	the	verification	process.	Their	opinion	about	the	correctness	of	the	proof	no	longer	matters.”.	
[12]	This	shows	that	in	Hales’	opinion,	the	proof	is	100%	certain,	because	programs	which	are	designed	
to	check	proofs,	and	are	carefully	examined	to	make	sure	that	they	themselves	do	not	contain	errors,	
had	verified	his	proof,	and	despite	it	not	being	able	to	be	proved	by	a	person,	it	is	still	valid.		

	 11	

Why	is	there	controversy	over	computer-assisted	proofs?	

There	 are	 three	 main	 reasons	 that	 some	 mathematicians	 have	 concerns	 over	 computer	 assisted	
proofs.	 These	 are:	 the	 lack	 of	 logical	 deduction	 used	 to	 get	 to	 a	 solution,	 the	 limits	 of	 human	
verification	on	proofs	due	to	length	and	complexity	of	proofs,	and	errors	in	computer	hardware	and	
software	which	may	cause	proofs	to	be	invalid.	

Lack	of	logical	deduction	
Some	people	 are	 not	 satisfied	with	 computer-assisted	 proofs	 because	 they	 do	 not	 always	 involve	
logical	deduction.	This	 is	because	computers	are	mainly	used	with	proofs	by	exhaustion,	which,	as	
stated	previously,	is	where	a	theory	is	split	up	into	a	finite	number	of	cases,	and	then	all	of	these	cases	
are	 individually	 proved.	 Some	 mathematicians	 also	 say	 that	 computer-assisted	 proofs	 lack	
mathematical	elegance.	They	say	that	 it	turns	mathematics	 into	a	quasi-empirical	science,	which	 is	
where	mathematicians	focus	more	on	getting	to	the	solution	of	a	problem,	or	finding	a	proof,	than	on	
the	mathematical	methods	and	reasoning	used	to	get	there	[14].	This	means	that	while	they	still	may	
agree	 that	 the	 proof	 is	 in	 fact	 a	 proof,	 they	 won’t	 regard	 it	 as	 such	 because	 it	 does	 not	 have	 a	
mathematical	foundation,	and	this	means	that	there	is	not	necessarily	an	explanation	as	to	why	it	is	
true	just	that	the	evidence	shows	it	is.	

Limits	of	human	verification	
Computer-assisted	proofs	are	also	not	always	verifiable	by	humans	because	humans	cannot	compute	
thousands	of	calculations	per	second,	and	so	to	verify	some	of	the	proofs	by	hand	would	take	many	
years,	which	is	just	not	feasible.	This	means	that	peer	review,	where	someone	with	a	knowledge	of	
the	field	will	review	the	proof	to	make	sure	that	it	is	accurate,	valid	and	of	high	quality,	is	difficult	to	
implement	 because	without	 reviewing	 every	 case,	 the	 reviewer	 cannot	 be	 sure	 that	 there	 are	 no	
errors.	[15]	Also,	errors	can	be	so	subtle	that	they	can	be	incredibly	hard	to	find	by	peer	reviewers,	
and	therefore	if	even	if	every	element	of	the	proof	is	checked,	if	just	one	small	detail	is	missed,	the	
proof	may	be	incorrectly	verified.	

Another	reason	that	there	is	controversy	is	that	humans	cannot	always	understand	computer	assisted	
proofs,	because	many	times	too	many	calculations	need	to	happen	which	a	person	would	not	be	able	
to	do	because	it	is	not	possible	to	remember	this	large	an	amount	of	information.	[16]		Some	people	
suggest	that	getting	an	answer	to	a	proof	is	not	the	part	which	is	ultimately	desired,	it	is	understanding	
how	that	answer	is	reached	which	is	what	allows	a	person	to	feel	as	if	they	have	proved	a	theorem.	
An	example	of	this	is	shown	in	‘On	Proof	and	Progress	in	Mathematics’,	where	the	author,	William	
Thurston,	said;	

On	a	more	everyday	level,	it	is	common	for	people	first	starting	to	grapple	with	computers	to	
make	large-scale	computations	of	things	they	might	have	done	on	a	smaller	scale	by	hand.	
They	might	print	out	a	table	of	the	first	10,000	primes,	only	to	find	that	their	printout	 isn’t	
something	they	really	wanted	after	all.	They	discover	by	this	kind	of	experience	that	what	they	
really	want	is	usually	not	some	collection	of	“answers”—what	they	want	is	understanding.	[16]	

This	quote	suggests	that	Thurston	accepts	computer-assisted	proofs,	however	does	not	believe	that	
they	allow	humans	to	understand	how	the	proof	is	valid.	He	suggests	that	getting	the	'answer'	is	not	
what	 the	 aim	of	 proving	 a	 theorem	 is;	 the	 aim	 is	 to	 understand	how	 the	 theorem	 is	 proved,	 and	
therefore	be	able	to	explain	it	without	the	assistance	of	a	computer.		

	 12	

Errors	in	computer	hardware	and	software	
Alongside	the	other	reasons	for	controversy,	computer	programs	are	prone	to	errors,	which	means	
that	if	a	program	claims	to	have	proved	something	then	the	output	of	the	program	may	look	like	it	
agrees,	however	a	logical	error	in	the	program	may	mean	that	it	has,	for	example,	not	proved	every	
case,	and	so	the	proof	may	not	be	valid.	An	example	of	when	this	type	of	error	has	been	found	was	in	
1994	when	the	Pentium	bug	was	discovered.	It	was	a	bug	which	occurred	in	a	group	of	Intel	processors	
named	Pentium	in	which	the	processors	gave	the	wrong	decimal	results	when	numbers	were	divided.	
The	problem	occurred	because	the	processor	had	a	‘division	table’,	which	was	stored	with	values	that	
were	used	when	the	processor	was	dividing	numbers,	and	five	of	the	thousand	entries	in	this	division	
table	had	been	incorrectly	entered	when	the	processor	was	being	made,	and	so	caused	results	to	be	
output	 incorrectly.	 A	 well-known	 case	 was	 discovered	 by	 Tim	 Coe,	 where	 if	 you	 entered	
4195835÷3145727,	the	result	given	would	be	1.33374	(6sf).	However,	the	actual	answer	is	1.33382	
(6sf),	meaning	there	was	a	relative	error	of	0.006%.	This	would	have	been	a	problem	if	a	mathematical	
problem	had	been	proved	using	a	computer	with	this	processor	because	even	though	it	only	happened	
in	a	small	amount	of	cases,	some	computer-assisted	proofs	need	thousands	of	cases	to	be	proved,	
and	if	even	one	of	these	had	been	incorrectly	‘proved’,	then	the	whole	proof	would	be	flawed	[17].	
Bugs	 are	 usually	 first	 searched	 for	when	 a	 result	 is	 returned	 and	 is	 not	what	 is	 expected.	 This	 is	
followed	by	a	long	process	of	debugging	the	program	for	any	instructions	which	cannot	be	justified,	
and	then	from	this	the	proof	has	to	be	re-calculated	so	that	it	does	not	rely	on	the	old	faulty	software.	
[8]	

As	shown	above,	sometimes	the	hardware	may	contain	problems,	however	sometimes	the	software	
may	 contain	 bugs,	 which	 could	 cause	 a	 computer-assisted	 proof	 to	 be	 falsely	 proved.	 Computer	
programs	are	created	by	humans,	and	therefore	are	prone	to	errors.	This	means	that	unless	every	part	
of	a	program	is	checked,	there	is	always	the	chance	of	an	error.	However,	to	check	every	part	of	a	
program,	you	would	need	to	do	all	of	the	calculations	yourself,	which	defeats	the	purpose	of	having	
the	computer	do	them	in	the	first	place.	This	means	that	you	have	to	rely	on	the	program	not	to	have	
any	errors,	but	some	mathematicians	are	not	happy	with	doing	this.	

There	 are	 some	 examples	 of	 why	 they	 wouldn't	 trust	 computer	 software,	 for	 example	 some	
computers	such	as	the	Univac	1108,	which	was	used	until	1980,	calculated	16777216-16777215	=	2,	
where	16777216	=	224.	This	was	because	the	accumulator	in	the	processor	only	had	a	length	of	24	bits,	
and	therefore	using	binary,	the	larger	number	could	not	be	represented	using	one	string	of	binary,	
and	 so	when	 the	 combination	of	more	 than	one	 is	 used,	 an	 error	 in	 the	program	meant	 that	 the	
subtraction	was	off	by	1.	[18]	This	is	caused	by	the	software	not	being	able	to	combine	the	longer	and	
shorter	binary	strings	correctly,	as	the	software	was	programmed	wrong	when	it	was	created.	This	
problem	 could	 have	 potentially	 invalidated	many	 proofs	 if	 they	 used	 this	 computer,	 and	 that	 is	 a	
reason	why	people	do	not	trust	any	computers,	as	errors	like	this	may	not	have	been	discovered	when	
the	proof	was	computed,	and	so	the	proof	may	be	invalid.	

Another	example	of	why	computer	programs	may	not	be	reliable	is	due	to	conversions	between	data	
types.	 If	 a	 program	 is	 using	multiple	 data	 types,	 then	 some	 of	 them	may	 be	 able	 to	 store	more	
information	than	others,	because	they	have	a	longer	length.	This	means	that	is	data	is	converted	from	
one	data	type	to	another,	then	this	may	cause	data	to	be	lost,	or	an	error	to	occur.	This	happened	in	
1996	with	the	Ariane	5	rocket	causing	 it	to	crash,	because	a	value	relating	to	the	alignment	of	the	
rocket	was	not	converted	properly.	The	value	was	converted	from	64-bit	floating	to	point	to	16-bit	
signed	integer	value,	but	on	the	day,	the	horizontal	bias,	which	relates	to	the	internal	alignment	of	the	
rocket,	was	larger	than	anticipated,	and	so	when	it	was	converted	to	a	16-bit	signed	integer	value,	an	
operand	error	occurred.	This	therefore,	per	the	failure	report,	caused	the	rocket	to	not	be	aligned	

	 13	

properly,	and	to	therefore	veer	off	course	and	crash	about	40	seconds	into	its	flight.	[19]	Although	the	
effects	of	this	example	may	seem	much	more	significant	than	if	the	same	had	happened	with	regards	
to	a	computer	assisted	proofs,	it	shows	that	even	after	the	extremely	thorough	checking	this	software	
had	to	go	through	to	be	allowed	on	a	rocket,	there	was	still	an	error	which	ended	up	to	be	extremely	
dangerous	and	expensive.	This	demonstrates	that	errors	in	computer	software	can	sometimes	be	so	
difficult	to	find,	and	therefore	are	a	reason	why	there	is	controversy	over	computer	assisted	proofs.	

	

To	conclude	this	section,	many	mathematicians	have	problems	with	computer	assisted	proofs	because	
they	do	not	believe	that	they	can	be	checked	thoroughly,	and	still	believe	that	there	is	the	possibility	
of	errors.	The	main	reason	for	this	are	errors	in	software	and	hardware,	as	something	which	may	seem	
trivial	can	jeopardise	a	whole	proof.	

	 	

	 14	

How	can	problems	with	computer	assisted	proofs	be	overcome?	

As	 has	 been	 seen,	 there	 are	many	 reasons	 why	mathematicians	 are	 wary	 about	 using	 computer	
assisted	proofs.	However,	there	are	many	ways	in	which	people	are	trying	to	make	them	more	reliable	
and	easier	to	be	verified.		

Proof	Assistants	
The	main	way	computer-assisted	proofs	are	verified	is	by	the	use	of	proof	assistants.	They	require	the	
user	to	input	the	conjecture	which	needs	to	be	formalised,	and	from	this	they	use	high	order	logic	
(HOL)	[20]	and	libraries	which	contain	pre-proved	theorems	to	verify	if	the	proof	is	correct.	[21]	Some	
examples	of	proof	assistants	include;	Isabelle	and	HOL	Light,	which	were	used	by	Hales	to	verify	the	
proof	of	the	Kepler	Conjecture,	as	well	as	Coq,	which	was	used	to	verify	the	proof	of	the	Four	Colour	
Theorem	in	2005	by	Georges	Gonthier.	[22]	[23]	

The	problem	with	proof	assistants	is	that	they	need	to	be	tested	themselves	to	make	sure	that	they	
do	not	contain	errors,	as	this	would	mean	any	conjecture	that	they	had	tested	would	not	be	proved.	
One	way	of	doing	this	 is	by	using	the	de	Brujin	Criterion,	which	states	that	only	a	small	part	of	the	
program,	called	the	proof	checking	kernel,	is	used	to	check	that	the	logic	and	mathematics	behind	the	
proof	is	correct.	This	means	that	this	is	the	only	part	of	the	code	of	the	proof	assistant	which	needs	to	
be	checked,	as	this	is	the	only	part	which	will	check	the	conjecture	which	is	being	input.	[24]	

As	shown	in	the	image	below,	the	proof	checking	kernel	is	separate	from	the	majority	of	the	system,	
meaning	that	any	errors	in	the	main	program	do	not	affect	it.	

	[24]	

One	way	of	checking	the	kernel	 is	by	using	the	Pollack	Inconsistency.	This	 is	done	by	checking	that	
when	the	assistant	outputs	something	to	the	user,	by	printing	it,	it	can	understand	what	it	has	output,	

	 15	

by	parsing	the	output	back	into	the	assistant.	This	is	then	compared	to	the	original	output,	and	if	they	
are	the	same,	then	the	assistant	is	Pollack-consistent.		

An	example	of	how	this	done	is	as	follows:	

	 parse(print(t))	=	t		 	 	 	 	 	 	 	 	 [24]	

If	this	returns	true,	then	the	proof	assistant	is	Pollack-consistent.	This	checks	that	the	kernel	works	
correctly	because	if	it	can	understand	and	interpret	an	input	to	be	the	same	thing	that	it	output,	then	
the	program	must	be	outputting	the	correct	information.	

Peer	Review	
Peer	review	is	usually	thought	of	as	humans	checking	a	proof	to	make	sure	that	it	is	legitimate	and	
does	not	contain	any	errors.	However,	for	computer	assisted	proofs,	this	may	not	be	able	to	be	the	
case,	because	as	discussed	earlier,	there	are	too	many	cases	which	can	be	of	too	high	complexity	for	
humans	to	thoroughly	verify	them	all	individually.	This	makes	sense,	because	if	the	proof	was	able	to	
be	solved	by	humans	in	the	first	case,	then	the	peer	review	could	also	be	done	by	humans.	This	means	
that	logically,	the	only	way	to	verify	a	computer	assisted	proof	is	with	a	computer,	as	that	is	the	only	
thing	that	can	check	every	case.	[15]	

Some	mathematicians	may	argue	that	 this	poses	 the	same	problems,	however,	 if	computers	using	
different	software	and	different	hardware	were	to	check	the	same	proof,	then	the	chances	that	the	
same	error	occurs	in	both	is	minimal.	This	means	that	in	a	sense,	a	peer	review	is	possible,	because	
the	proof	 is	being	reviewed	by	another	system.	 If	 this	 is	 repeated	with	multiple	systems,	 then	the	
chance	of	there	being	any	error	basically	disappears.	

However,	a	benefit	of	using	humans	as	peer	reviews	is	that	they	may	spot	a	more	efficient	method	of	
solving	a	problem,	or	 they	may	be	able	to	give	other	subtle	 improvements	which	will	 improve	the	
program,	whereas	using	a	computer	would	not	allow	this	to	happen.	This	is	one	part	of	a	peer	review	
which	would	 therefore	 still	need	 to	be	done	by	humans,	however,	 the	checking	of	 cases	could	be	
completed	by	computers,	as	this	does	not	require	any	imagination.	[25]	

Reliable	hardware	and	software	
Hardware	problems	in	mainstream	computers	are	becoming	increasingly	less	common.	This	is	because	
of	 the	greater	number	of	users	using	mainstream	computers	 compared	 to	 the	20th	 century,	when	
theorems	like	the	Four	Colour	Theorem	were	proved,	and	this	means	errors	are	much	more	likely	to	
be	picked	up	on.	[26]	

The	same	is	to	be	said	about	software,	as	the	increase	in	users	means	that	they	are	more	likely	to	pick	
up	on	any	subtle	errors	in	the	operating	system	because	there	are	so	many	people	who	are	likely	to	
find	it.	However,	there	are	still	more	ways	in	which	software	errors	can	be	prevented.	Using	lower	
level	languages	is	one	of	these.	Low-level	languages	are	closer	to	machine	code,	which	means	each	
instruction	is	nearly	equivalent	to	one	instruction	in	machine	code.	[27]	This	means	that	there	is	less	
chance	of	an	error	occurring	when	the	code	is	being	interpreted,	because	the	programmer	is	telling	
the	computer	exactly	how	it	wants	it	to	act,	as	it	is	possible	to	even	decide	which	memory	location	are	
to	be	used.	This	means	that	the	possibility	that	there	is	an	error	 in	the	software	is	greatly	reduced	
because	the	program	can	be	seen	to	compute	exactly	as	intended.	 	

	 16	

Conclusion:	The	future	of	proofs	
In	the	future,	computer	assisted	proof	are	going	to	become	much	more	important	in	the	mathematical	
community.	This	is	because	of	the	ease	with	which	they	can	be	proved,	and	the	need	for	some	of	these	
proofs	by	computer	scientists.	Mathematicians	like	elegant	proofs	because	they	like	to	be	able	to	see	
why	 a	 problem	 can	be	proved,	 but	 if	 a	 proof	 is	 needed	by	 a	 computer	 scientist	 to	 create	 a	more	
powerful	system,	then	they	may	not	care	how	it	is	proved,	only	that	the	answer	is	true,	and	that	they	
can	utilise	this.	[28]	Some	mathematicians	even	say	that	it	is	a	necessity,	as	some	theorems	are	too	
complex	to	be	proved	by	humans,	and	therefore	it	is	just	evolution.	[29]	

Additionally,	proof	checking	processes	are	only	going	to	become	increasingly	more	thorough,	because	
as	more	proofs	are	found,	the	amount	of	mathematical	knowledge	known	by	mankind	will	increase,	
and	there	will	be	too	much	for	one	person	to	know	everything.	This	means	that	computers	will	need	
to	be	used	in	order	to	store	everything	we	know	about	mathematics,	so	that	when	a	new	conjecture	
needs	to	be	proved,	there	is	a	central	place	where	all	knowledge	can	be	found.	[30]		

Some	people	suggest	that	automated	theorem	provers	are	the	future	of	mathematical	proofs.	These	
are	 programs	 which	 are	 given	mathematical	 rules	 and	 some	 axioms,	 and	 from	 these	 are	 able	 to	
generate	proofs	of	mathematical	results.	[28]	These	have	a	much	wider	variety	of	uses,	for	example	
they	can	be	used	to	mathematically	model	situations	so	that	you	do	not	need	to	test	every	possibility.	
This	means	that	they	can	save	a	lot	of	time	for	businesses	who	need	to	test	something	but	do	not	have	
the	time	and	money	to	do	so,	as	they	can	mathematically	verify	that	a	system	will	always	perform	
they	way	it	is	supposed	to.	One	disadvantage	to	these	is	that	they	still	require	lots	of	user	input,	as	
they	need	to	know	a	great	deal	of	axioms	in	order	to	create	a	proof,	but	once	these	are	entered,	then	
they	can	be	extremely	efficient.	Also,	if	a	centralised	database	of	all	known	mathematical	knowledge	
was	 created,	 then	 this	 could	 be	 shared	 and	 edited	 by	 people	worldwide,	which	would	 allow	new	
proofs	to	be	generated	much	more	easily.	[28]		

However,	one	thing	which	is	certain	is	that	problems	which	exist	today	relating	to	computer-assisted	
proofs	will	be	become	less	important	as	time	progresses.	This	is	because	the	advancement	of	software	
and	hardware	will	mean	that	proof	checking	can	become	much	more	accurate,	reliable	and	efficient.	
However,	there	is	always	the	chance	of	a	small	error,	and	this	therefore	means	it	is	unlikely	that	it	can	
ever	be	guaranteed	that	every	proof	is	completely	valid,	but	the	likeliness	of	errors	will	become	so	
miniscule	that	eventually	computer	assisted	proofs	will	be	trusted.			

	

	 	

	 17	

Works	Cited	
	

[1]		 L.	Rogers,	"The	Four	Colour	Theorem,"	2011	February	2011.	[Online].	Available:	
http://nrich.maths.org/6291.	[Accessed	28	August	2016].	

[2]		 J.	Brikaite,	N.	Megens,	O.	Somova,	S.	Kerem	Ünal	and	T.	Sørensen	Felby,	"Computer	Assisted	
Proofs	and	Their	Effects	on	Pure	Mathematics:	A	case	study	of	the	four	colour	theorem,"	
Roskilde	University.	

[3]		 G.	Mints,	"Peano	Axioms,"	[Online].	Available:	
http://www.encyclopediaofmath.org/index.php?title=Peano_axioms&oldid=36502.	[Accessed	
15	August	2016].	

[4]		 S.	Jameson,	Decision	Mathematics	1,	Pearson	Education	Limited,	2010,	p.	33.	

[5]		 R.	Pelayo,	The	Peano	Axioms,	University	of	Hawaii,	p.	3.	

[6]		 "Proof	by	contradiction,"	[Online].	Available:	
https://en.wikipedia.org/wiki/Proof_by_contradiction#No_least_positive_rational_number.	
[Accessed	15	August	2016].	

[7]		 "Undergraduate	Mathematics/Proof	by	exhaustion,"	28	November	2014.	[Online].	Available:	
https://en.wikibooks.org/wiki/Undergraduate_Mathematics/Proof_by_exhaustion.	[Accessed	
10	October	2016].	

[8]		 A.	Neumaier,	Computer-assisted	proofs,	Wien	Univeristy,	2006,	pp.	2-5.	

[9]		 M.	McQuain,	"Virginia	Tech	Math	2534	Lecture:	Proof,"	[Online].	Available:	
http://www.math.vt.edu/people/mcquain/answers_proofs.pdf.	[Accessed	10	December	2016].	

[10]		 W.	Knight,	"Computer	generates	verifiable	mathematics	proof,"	New	Scientist,	19	April	2005.	
[Online].	Available:	https://www.newscientist.com/article/dn7286-computer-generates-
verifiable-mathematics-proof/.	[Accessed	9	October	2016].	

[11]		 R.	Wilson,	Four	Colors	Suffice,	Oxford:	Princeton	University	Press,	2014.		

[12]		 J.	Aron,	"Proof	confirmed	of	400-year-old	fruit-stacking	problem,"	New	Scientist,	12	August	
2014.	[Online].	Available:	https://www.newscientist.com/article/dn26041-proof-confirmed-of-
400-year-old-fruit-stacking-problem/.	[Accessed	28	September	2016].	

[13]		 R.	Khamsi,	"Mathematical	proofs	getting	harder	to	verify,"	New	Scientist,	19	February	2006.	
[Online].	Available:	https://www.newscientist.com/article/dn8743-mathematical-proofs-
getting-harder-to-verify/.	[Accessed	28	September	2016].	

[14]		 "Quasi-empiricism	in	mathematics,"	[Online].	Available:	
http://encyclopedia.kids.net.au/page/qu/Quasi-empiricism_in_mathematics.	[Accessed	28	
August	2016].	

	 18	

[15]		 A.	Perry,	"Evaluating	Information	Sources:	What	Is	A	Peer-Reviewed	Article?,"	Lloyd	Sealy	
Library,	14	September	2016.	[Online].	Available:	
http://guides.lib.jjay.cuny.edu/c.php?g=288333&p=1922599.	[Accessed	11	December	2016].	

[16]		 W.	P.	Thurston,	"On	Proof	and	Progress	in	Mathematics,"	Bulletin	of	the	American	
Mathematical	Society,	vol.	30,	no.	2,	pp.	161-177,	1	April	1994.		

[17]		 M.	Janeba,	"The	Pentium	Problem,"	20	April	2011.	[Online].	Available:	
http://www.willamette.edu/~mjaneba/pentprob.html.	[Accessed	02	September	2016].	

[18]		 S.	M.	Rump,	Computer-assisted	Proofs	and	Self-validating	Methods,	Linköping	University,	2005,	
pp.	195-240.	

[19]		 P.	J.	L.	Lions,	Ariane	5	Flight	501	Failure	Report,	Paris:	ESA	and	CNES	independent	Inquiry	
Board,	1996.		

[20]		 V.	Voevodsky,	"Computer	Proof	Assistants	-	the	future	of	mathematics,"	Institute	for	Advanced	
Study	in	Princeton,	NJ,	27	August	2014.	[Online].	Available:	
http://www.math.ias.edu/vladimir/files/2014_08_27_NUS.pdf.	[Accessed	14	December	2016].	

[21]		 J.	P.	Bridge,	"Machine	learning	and	automated	theorem	proving,"	University	of	Cambridge,	
Cambridge,	2010.	

[22]		 P.	Schnider,	An	Introduction	to	Proof	Assistants	-	Student	Seminar	in	Combinatorics:	
Mathematical	Software,	ETH	Zurich,	2014.		

[23]		 L.	C.	Paulson,	The	Future	of	Formalised	Mathematics,	Cambridge:	University	of	Cambridge,	
2016.		

[24]		 F.	Wiedijk,	"Pollack-inconsistency,"	Electronic	Notes	in	Theoretical	Computer	Science,	Radboud	
University	Nijmegen	Heyendaalseweg	135,	6525	AJ	Nijmegen,	The	Netherlands,	2010.	

[25]		 D.	J.	Benos,	K.	L.	Kirk	and	J.	E.	Hall,	"How	to	Review	a	Paper,"	Advances	in	Physiology	Education,	
vol.	27,	no.	2,	pp.	47-52,	2003.		

[26]		 J.	P.	Eckmann,	H.	Kock	and	P.	Wittwer,	"A	computer-assisted	proof	for	universality	for	area-
preserving	maps,"	Memoirs	of	the	American	Mathematcial	Society,	vol.	47,	no.	289,	January	
1984.		

[27]		 P.	Heathcote	and	R.	Heathcote,	"OCR	AS	and	A	Level	Computer	Science,"	Dorset,	PG	Online,	
2016,	p.	44.	

[28]		 M.	Freiberger	and	R.	Thomas,	"The	future	of	proof,"	10	April	2015.	[Online].	Available:	
https://plus.maths.org/content/future-proof.	[Accessed	11	December	2016].	

[29]		 M.	Harris,	"Mathematicians	of	the	Future?,"	23	March	2015.	[Online].	Available:	
http://www.slate.com/articles/health_and_science/science/2015/03/computers_proving_mat
hematical_theorems_how_artificial_intelligence_could.html.	[Accessed	14	December	2016].	

	 19	

[30]		 H.	Geuvers,	Proof	Assistants:	history,	ideas	and	future,	The	Netherlands:	Radboud	University	
Nijmegen,	2009.		

	

	

	

