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Abstract

Existing music recommendation techniques currently available for workouts either are generic,
and not curated to a specific user’s music taste, or don’t take into account a user’s workout history
to produce targeted recommendations. We introduce a platform, Osti, which tackles both of these
issues. It produces recommendations for any possible workout type a user can record, using their
complete listening history from streaming services, helping them to achieve their ideal workout
based on learned or user-specified targets.

This resulted in the creation of a personalised music recommendation system, producing recom-
mendations based on a user’s workout context, both asynchronously in the form of playlists, and in
real-time. The application consists of multiple microservices for: data collection, recommendation
generation and playlist creation, as well as a web interface for viewing and updating this data. It
also resulted in a WatchOS application for user vital collection to improve music recommendations
in real-time.

Current empirical results show that Osti outperforms almost all other pre-generated workout
playlists in keeping a user close to their target workout vitals, and has similar or better success
to user-curated playlists in most workout types. It also is shown to improve on this performance
using real-time recommendations to adapt the music playing for constant-exertion workouts such
as running.
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Chapter 1

Introduction

1.1 Motivation
With the growth of digital media, the amount of music that’s readily available is dramatically
increasing each day, and so it’s becoming an ever-growing challenge for listeners to filter through
and find the songs they prefer most. In 2017, Spotify confirmed that they add around 20,000 songs
a day to their catalogue, moreover they also stated in 2020 that this had grown to nearly 40,000
songs daily [1], showing how rapidly the streaming industry is growing.

It’s also been well researched that music can help improve a person’s performance while doing
many activities, such as exercising. One report in the Journal of Sports Sciences [2] stated that
there are many different benefits which listening to music while doing exercise brings, for example
diversion of attention [3], triggering or regulation of specific emotions and moods [4] and encour-
agement of rhythmic movement [5], which all lead to increased performance. However, with the
overwhelming number of songs available, it can be difficult to select the optimal music to produce
the best results.

Currently, the most common way to get music for a workout is to personally curate a playlist
for every possible workout type. However, this takes time to thinks of tracks and order them for
the workout, and these playlist are also usually limited to tracks the user knows - they don’t allow
new music to be discovered that may be even better suited for a specific workout context. This
is very slow and wastes a lot of time, and therefore is the perfect candidate to be sped up by
automation.

This is where Music Recommendation Systems come in. They’re usually used to create playlists
for users. These are most commonly one of two types - personalised playlists, such as Spotify’s
‘Made For You’, and activity- or context-specific ones, such as a pre-made ‘Home Workout’ playlist.
However, these both lead to problems; personalised playlists may have tracks inappropriate for the
current context, e.g. songs which are too slow for running, and curated playlists don’t take a user’s
music taste into account. This therefore leaves a gap in the market, since it’s known that peo-
ple have context-based music preferences [6], but there aren’t systems which take advantage of this.

However, even if these playlists were generated perfectly for the user’s ideal workout, their ac-
tual workout may not go according to plan. Therefore, being able to adapt these recommendations
in real-time, to keep a user on track to hit their workout targets without over-exerting themselves,
would allow for a more useful system.

1.2 Objectives
The main objective of this project is to create a system that automatically generates user-specific
playlists for different workout types, and be able to adapt these recommendations in real time to
keep a user on track to reach their workout targets. This tackles the following key problem areas:
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• Context-Aware Recommendations. People listen to different types of music whilst they
do different activities. Suggestions should be tailored to a specific workout context, e.g.
running, weightlifting or Pilates.

• Personalised Suggestions. People have their own music taste, which carries through to
when doing different activities. Therefore, suggestions should take into account a user’s
personal likes and dislikes through the user of their listening history.

• Automation. Currently, to create a playlist like this requires lots of manual curation.
The system should generate these playlists automatically, with minimal user interaction,
gathering the data needed from existing sources such as listening history, and workout data
from personal devices such as smart watches.

• Real-time Updates. Workouts don’t always go to plan, and therefore the system should
be able to adjust these recommendations in real-time to constantly keep the users vitals at
their ideal level for them to reach their targets.

1.3 Contributions
The project has produced a end-to-end system, Osti, which automatically retrieves users workout
and listening data (Section 3.2) and uses this to generate recommendations of tracks which will
help them in achieving their target workout, with respect to target vital values such as heart rate
and distance covered (Section 3.3). These recommendations come in the form of automatically
generated playlists (Section 3.4), as well as an Apple Watch application to provide real-time up-
dates to these recommendations, adapting to changes in the workout (Section 3.5). The system
can managed through the online web application located at https://osti.uk (Section 3.6).

Osti is a system that uses not just musical features such as tempo to recommend tracks, but
also the historical impact of the track on workout performance. This impact is shared across
everyone who uses the application using collaborative filtering, meaning the system learns and
shares knowledge between users, so as more users enter the system, the amount of data powering
recommendations also increases.

6
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Chapter 2

Background

2.1 Recommendation Systems
Recommendation systems are applications which, when given a dataset containing multiple items,
will predict which items a particular user would most prefer. An example is the video stream-
ing platform Netflix, which uses recommendation systems to predict which videos a user is most
likely to want to watch. This is done using their watch history [7]. There are two main groups of
technologies used by recommendation systems, which are content-based systems and collaborative
filtering.

2.1.1 Utility Matrix of Preferences
One model which is very useful for explaining recommendation systems is the utility matrix of
preferences, as presented in the book Mining of Massive Datasets by Leskovec et al. [7]. It is used
to represent the preferences between users and items in the dataset. This is represented in the
form of a matrix, where each pair of user and item contains a value which represents the preference
of a user for that item. One example of this could be an integer rating of 1 to 5. The majority of
the entries in this matrix are unknown, meaning the system has no explicit preference value for a
user-item pair.

Shake It Off Blank Space Style Baby Don’t Start Now Levitating Physical
Taylor Swift Taylor Swift Taylor Swift Justin Bieber Dua Lipa Dua Lipa Dua Lipa

A 5 5 5 2
B 5 5 4
C 1 5 4
D 3 2

Table 2.1: A utility matrix representing song ratings on a 1-5 scale

As seen in Table 2.1, the blank spaces represent unrated songs. As the size of the dataset
grows, the sparseness of the utility matrix will also increase. The aim of the system is to fill in
the blanks of this matrix, the two ways to do this being to use content-based systems and collab-
orative filtering. The former involves using features of the songs, such as tempo and artist, so for
example, since user C likes the songs Don’t Start Now and Physical, they’re very likely to also like
Levitating, since they all share the same artist. The alternative method is collaborative filtering,
so for example, since users B and C both like the songs Don’t Start now and Physical, and B likes
the song Baby, C will probably like the song Baby also.

We don’t need to fill in all of the blanks, since this can be very computationally expensive. We
only need to find the values which will have a high value, since these will be recommended to the
user.

The given values in a utility matrix can be hard to collect. There are two main methods used
to get these values. The first is by getting users to explicitly rate items, in our case songs. This
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can be effective since the rating you get from a user is accurate to their preference, however, it’s
limited in reality since users aren’t always willing to rate items. Therefore, the alternate method
is to infer preference from a user’s behaviour. For example, if a user listens to a song more than
once, it can be assumed that they like it.

2.1.2 Content-Based Systems

As stated earlier, a recommendation systems consists of a set of users and a set of items which can
potentially be recommended to the users. For each of these potential items, a profile is created,
which is a set of features that represent this item. [7] For example, in a music recommendation
system, these items to be recommended would be songs, and some features could include artist,
genre, tempo and key. These features are all usually given with the song, however features could
also be learned data, such as ‘danceability’, which are predicted using machine learning models.

When representing an item, there are two main types of features which need to be represented:
discrete and numerical features. The former are things like artist and genre, which can be picked
from a finite set, and they’re either part of the item profile or not. For example, if we chose artist
as a feature of a song, then feature this can be represented by a vector, where each component is
every possible artist, and the value is 1 if the artist performs in the song, and 0 if not. Numer-
ical features cannot be represented by a boolean vector, and so are things like tempo, where it’s
important that if two songs are close in tempo, they’re more likely to be similar than two songs
which vary in tempo by a greater value.

Once we have an item’s profile, we need to be able to measure how similar two items are. There
are many different ways of doing this, and these are compared in Section 2.1.5. One thing to take
note of is that numerical features need to be scaled so that they do not dominate the measurement.

The other key aspect of a recommendation system is being able to represent a particular user’s
preferences through a user profile. These profiles have to have the same components as the item’s
profiles, so that they can be easily compared. Each of these features in the user profile can be
represented similarly as discrete or numerical features, where the discrete value of 0 and 1 could
represent if a user has listened to a particular artist, or a numerical value could give their rating
of that artist, for example based on how much they have listened to them.

An example for a user profile, based on the utility matrix in Table 2.1, could be that user A
has listened to 4 songs, 3 by Taylor Swift and 1 by Dua Lipa. Therefore, 75% of the songs they’ve
listened to are by Taylor Swift, and 25% are by Dua Lipa, so the user profile will have 0.75 and
0.25 respectively for these two artist’s components. However, to make this more accurate, we could
take into account their rankings for the songs they’ve listened to. We can calculate the average
rating value for A from all rankings, which is 4.25, and subtract this from all ratings. This means
any ratings below average are negative, and any above average are positive, which is useful in
recommendation. Therefore, the new value for Taylor Swift would be the average of 5-4.25, 5-4.25
and 5-4.25, which is 0.75. On the other hand, their ranking of Dua Lipa would be like 2-4.25,
which is -2.25.

The final stage is to recommend items to a user based on their content. This is done using both
the item and user profiles, using a similarity algorithm as when measuring how similar two items
are. Some other optimisations can be applied here in order to not have to check every possible
match, such as random hyperplanes and LSH, to put items into different buckets, and use these
techniques on the users to decide which buckets to look in.

2.1.3 Collaborative Filtering

The other main technology used in recommendation systems is collaborative filtering. This is dif-
ferent to content-based models since it does not take into account any of the features of the data
to be recommended. Instead, it uses the similarity in how users rate specific items to determine
how alike they are. For example, in a music recommendation system, to recommend songs to a
particular user, users who listen to similar music to that user are found, and songs that they like
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will be recommended. [7]

The first area we have to think about is how to measure the similarity of two users. This is
discussed more in Section 2.1.5.

There are two main types of collaborative filtering; user-based and item-based. User-based
collaborative filtering works by taking a particular user A, and using a similarity algorithm to find
the set of most similar users UA. Then, the recommendations can be made based on what songs
these similar users like. For example, say we want to estimate the rating of song X, which user A
has not rated, but members of their similarity set UA have. First, you normalise you averaging the
rating of the users in UA who rated song X, by subtracting their average rating. This accounts for
any users who give high or low ratings. Then, we average the normalised ratings for all users in
UA who rated X. Then, this normalised average is added to user A’s average rating for all items.
This then gives a predicted rating for song X by user A.

On the other hand, item-based collaborative filtering works by comparing the similarity of
items, in this case songs, rather than users. This is done by finding the set of most similar items
to song X, SA. These rankings are then again normalised, and then the average ranking of these
songs for user X is calculated.

In both of these methods, at least the values with a high predicted ranking need to be estimated,
in order for items to be recommended for the user. The advantages of user-based collaborative
filtering are that we only need to find the set of similar users once, and then we can use it to fill
in the remainder of the utility matrix. On the other hand, with item-based collaborative filtering,
we need to need to find the similar items for all items before we can fill in the gaps for a particular
user. However, for item-based collaborative filtering, the results are more reliable, since you know
both of the items will definitely be similar, and therefore the user will most likely like it, whereas
with user-based collaborative filtering, a similar user may have a slightly different taste, which
means some songs they like may not match up with the user looking for recommendations, and so
there is no guarantee they will like the recommendations.

One advantage of collaborative filtering in general is that each user’s preferred items can be
precomputed, since the utility matrix changes slowly over time, so it needs to be recomputed in-
frequently.

However, a disadvantage of collaborative filtering is that the data can be sparse, and therefore
it may be hard to find similar users or items. One way to fix this is to cluster items and/or users
together. A similarity algorithm can be used to cluster items together, or it could be done on a
specific feature. For example, if we clustered the utility matrix in Table 2.1 by artist, we would
end up with the following:

Taylor Swift Justin Bieber Dua Lipa
A 5 2
B 2 4
C 1 4.5
D 3 5

Table 2.2: A utility matrix representing song ratings on a 1-5 scale, clustered by artist

This is calculated by the rating for a user of a cluster being the average rating that they gave
to all of the members of the cluster that they rated. This process can be repeated multiple times,
for example it could then be done by grouping all artists of the same predominant genre. Users
could also be clustered using a similarity algorithm in an equivalent manner.

Once the utility matrix is clustered appropriately so that it is less sparse, then to to find the
rating of song X for user A, look up which clusters X and A belong to, and if the entry is non-
blank, use this value. If the value is blank, then use a similar method to above where similar
clusters are considered.
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2.1.4 Hybrid Solutions

Both of the solutions above offer advantages and disadvantages, which can be seen below in Table
2.3.

Content-Based Systems Collaborative Filtering
Advantages - Doesn’t require data about other

users
- Can learn specific user interests
- Can recommend unknown items

- No item features needed
- Allows items with different fea-
tures to be discovered that will
most likely be liked

Disadvantages - Requires item features of good
quality
- All recommendations are similar
to user’s taste, therefore taste isn’t
expanded

- New items have no data
- Data is sparse

Table 2.3: Content-Based Systems vs Collaborative Filtering [8] [9] [10]

Therefore, the way to go about mitigating these disadvantages are to combine the two methods,
as is completed in many papers, including one by Su and Chiu [8]. The main problems which are
tackled are:

• New items have no data. This occurs when no user has rated a particular item. This
means that there is no way of predicting if a user will like that item. This is mitigated by
using item features.

• Sparse Data. This is where the utility matrix is very sparsely populated. The more sparse
this matrix is, the harder it is to predict user ratings [8]. This is also mitigated by using item
features.

• Recommendations don’t expand taste. This means that only similar items would be
suggested, however there may be patterns not detected by the features of the items which
mean people usually like both items. The incorporation of collaborative filtering allows these
patterns to be discovered.

The hybrid system essentially uses item-based collaborative filtering to predict user rating,
however uses the similarity of music content instead of music rating. This allows the user’s music
taste to be predicted, even when data is sparse. Su and Chiu’s system uses low-level music features,
however this could be extended to use other features such as tempo and artist.

Their system is broken down into two phases, offline preprocessing and online prediction. Offline
preprocessing is used in in order to accelerate the online prediction stage. Offline preprocessing
consists of extracting the features of the music, and then using these to generate the item-to-item
similarity matrix, using a similarity algorithm.

Online prediction only occurs when a user is looking for recommendations. This phase uses the
pre-computed similarity matrix to figure out all of the users unknown rankings. For each unknown
ranking, the similarity matrix is used to figure out the most similar songs to that song quickly, and
then the unknown ratings of the target can be computed by item-based collaborative filtering.

A mathematical example from Su and Chiu’s paper is as follows. The most relevant item set
to target item itmi for an active user uz is Uz = ∪itmp, where itmp are unique items of music.
The rating vzi of itmi for user uz is defined as:

vzi =

∑
itmp∈Uz

simi,p × vzp∑
itmp∈Uz

simi,p
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Where simi,p is the result from the pre-computed similarity matrix for items i and p.[8]

2.1.5 Similarity Algorithms

One important part of a recommendation system is deciding how similar two items are. There are
many algorithms to do this, each with their own advantages and disadvantages.

2.1.5.1 Jaccard Index

Jaccard Index is used to measure the similarity between two sets. It’s translated to vectors which
consist of binary values, such as songs which have been listened to and ones which have not. It’s
calculated by taking the intersection the components of the vectors which are 1s, and dividing by
the union of this. [11] It can be written:

dist(A,B) =
|A ∩B|
|A ∪B|

Where |A∩B| represents the number of components the two vectors have set to 1 in common,
and |A ∪B| represents the number of components they have set to 1 between them. [12]

The Jaccard Index doesn’t take into account how much a user likes a particular item in the
utility matrix, just which items they have rated. Therefore, it loses information when there is a
metric to how much a user likes a specific item.

2.1.5.2 Cosine Similarity

Cosine Similarity is one of the most frequently referenced similarity algorithms in recommendation
systems literature [6–8]. It measures similarity by calculating the cosine of the angle which the
two input vectors make in their dot product space. [11]

Given two vectors of features A and B, the cosine similarity between them is calculated using
the formula:

sim(A,B) =
A ·B

||A|| × ||B||
=

n∑
i=1

Ai ×Bi√
n∑

i=1

A2
i ×

√
n∑

i=1

B2
i

The resultant value is between 1 and -1, where 1 is a perfect match, and -1 means they’re
opposites. However, one downside is that it does not take into account the length of the vector.

Another problem is that blank values in the utility matrix are treated as 0s, which means that
they are interpreted as a dislike, however this is something which can be improved upon with
hybrid solutions, by using song features to predict a users preference towards a song, so there are
less blank values [8].

Cosine Distance is a commonly used to reference the inverse of Cosine Similarity, where:

Cosine Distance = 1− Cosine Similarity

2.1.5.3 TS-SS (Triangle’s area Similarity - Sector’s area Similarity)

To tackle the drawbacks of cosine distance, namely that the length of the vector is not taken
into account, TS-SS was developed. This makes sense when trying to find the similarity between
ratings, since songs with higher ratings are what the system is looking for in order to recommend,
and therefore should have a higher similarity. However, it may not translate as well to features
such as tempo, since a higher tempo does not necessarily mean a higher similarity.

TS-SS works by calculating the area in the triangle between two vectors, and then subtracting
a sector which is calculated using the Euclidean distance between the vectors, which is needed for
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when two vectors of different lengths have the same angle. This allows it to take into account not
just the angle between the vectors, but also the length of the vectors [13].

2.2 Similar Existing Systems

The current landscape of music recommendation systems is pretty wide, and research is ongoing
in multiple areas. The two methods of collaborative filtering and content-based methods detailed
above are what the majority of new emerging techniques are built upon, and there are many more
state-of-the-art approaches which build upon these.

However, one thing with these methods is that they usually take into account lots of data over
a long period of time. They basic versions described above are not necessarily designed to take into
account short-term fluctuations in what a user wants to listen to. This can change based on the
activity being completed, and therefore some other ideas have been proposed to figure out these
activities and use them to help influence music recommendation.

In this section we will explore some similar systems in depth, and provide a thorough evaluation
of each system.

2.2.1 Context-aware Mobile Music Recommendation for Daily Activi-
ties

2.2.1.1 Overview

This was a case study from the National University of Singapore, which looked into using contex-
tual information collected from low-level mobile phone data, along with music context analysis, to
recommend music for daily activities [14]. These are things such as working, studying, running
and shopping. Their efforts culminated in an Android application.

The paper’s main contributions are split into four parts:

• Automated activity classification: The paper uses low level data from a mobile phone,
specifically time, accelerometer data and microphone data, in order to predict the current
activity of the user. The do this by using a probabilistic model to classify the activity into
either working, studying, running, sleeping, walking or shopping.

• Automated music content analysis: The next major contribution is to classify how
appropriate a song is for each of the particular activities listed above. They don’t assign one
category per song, but use a probability, so that a song can be recommended for multiple
activities. This is done using another probabilistic model, which takes into account the user
feedback on each song, for example, by how quickly they skip it.

• Solution to the cold start problem: One problem most music recommendation systems
is the cold start problem, which is when the system has no information on a song or on a user,
so they can’t accurately recommend songs. This is because most other system use some kind
of collaborative filtering, which requires some form of user ratings or manual annotations.
However, by using music content analysis, the features of a song can be pre-calculated, and
by being able to quickly detect activities, a good starting recommendation can be given to
the user, which improves over time.

• Implementation and evaluation: The paper implements this all directly on a mobile
phone, except the pre-computed music content analysis, which is done on a sever. The paper
also gives a very thorough evaluation of the accuracy of the application, and explains how
user testing was implemented for continual feedback.

The first two of these contributions are the key to creating the algorithm to suggests songs.
The first, also known as context inference, uses a feature vector, collected from the mobile phone’s
time, accelerometer and microphone data, in order to calculate a probability distribution over the
range of possible contexts (or activities). It does this using a Naive Bayes method, since this has
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a fast prediction and allows fast incremental training.

The second contribution, also known as music content analysis, combines both features of mu-
sic, along with user feedback on how much a user like a certain song, to suggest songs which
correlate to a certain context. It uses a method called Autotagger to initialise the model between
the music and the context, which is the same for all users. The probability of a user liking a song
based on a context is then modelled by a random variable R, which is updated as a user provides
feedback on the song.

The two equations for both of these contributions are combined to generate probabilities a user
will like each song based on the current context. Finally, a recommendation task is created, which
is to maximise the user satisfaction for the context by giving the most appropriate songs.

2.2.1.2 Evaluation

The evaluation of the application is very thorough, analysing the accuracy of the music-context
model and the sensor-context model, as well as using lots of user feedback throughout the process.

For the music-context model, it classified the six activities mentioned earlier, and worked es-
pecially well for running and sleeping. The paper doesn’t elaborate on why this is, however these
activities both tend to have a very specific type of music associated with them - sleeping being
calm, relaxing music, and running usually high-energy music.

For the sensor-context model, the paper compares the approach of Naive Bayes against 5 other
approaches. The results show that out of all of the approaches chosen, the Naive Bayes approach
performed the worst. However, this model was chosen since it can give a fast prediction, and allows
for incremental training (meaning the sensor context models don’t need to be completely retrained
each time more data is collected). This was a limitation of the mobile technology available at
the time, and therefore the choice of classifier is something which could be improved upon, since
more complex classifiers would be able to perform in efficient time on today’s devices. Another
thing noted is that the ‘working’ and ‘studying’ categories were not well distinguished by any of
the classifiers, since the information gathered is usually very similar. This may benefit from other
features, such as user age or location, in order to distinguish between them.

The user study undertaken throughout the project used 10 participants who all used the ap-
plication. These users were also questioned about the need for such an application, to which the
results were overwhelmingly encouraging. Since this paper focused on daily activities, and used
mobile phone data, whereas most existing papers in the area at the time didn’t, it was hard to
make a direct comparison to any other systems. Therefore the paper does a comparison between
recommending songs randomly, using the ‘auto’ mode, where the context category was inferred,
and the ‘manual’ mode, where the context category is given by the user. They created a control
group and an experimental group, giving the control group random recommendations, and the
experimental group data from the application. The users did each detectable activity for around
20 minutes, and then rated the song on a scale of 1 to 5 based on how much they liked it. The
results were best for the manual mode of the application, closely followed by the auto mode, both
averaging around 4/5. The random recommendations still scored fairly highly, at around 3.5/5.
However, the difference between manual and auto mode was very small, and therefore showed that
their sensor-context model was fairly accurate.

One problem with this evaluation is that these experiments only took place over a small time
frame. Therefore, the authors also did an adaptation evaluation, in order to see how the recom-
mendations changed for two of their users over the course of a week. The results showed a massive
increase in accuracy of both context inference and song recommendation, from 87% to 96% and
68% to 93% respectively. This gives confidence to the idea of the application learning about the
user over time in order to improve recommendations and more accurately detect activities.

The paper is very obviously limited by the mobile technology available at the time - for example,
only using the features of time, accelerometer data and microphone data to train it’s sensor-context
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model. However, the results still show an increase in recommendation ratings with the applica-
tion in comparison to randomly generated songs in the user evaluation. The user evaluation also
proved that over a more significant amount of time, the recommendations increase in accuracy,
and therefore this idea is worth investigating further. With the increase in types of data which are
able to be collected from users, for example heart rate and more detailed fitness and sleep tracking,
using devices such as smart watches, the accuracy of a sensor context-model is likely to increase
significantly.

The main takeaways from this paper are:

• Incremental Training is very useful since it doesn’t require all historic data for every user to
be stores, which is unsustainable. For sensor data, it just requires one model per user, which
can be made more accurate as data is collected, and then this data can be discarded once it
has been used to update the model.

• To prevent the cold-start problem, new songs should have their features analysed in order to
have data about which contexts they are most appropriate for. For users with no listening
history, this is enough to still provide songs, however over time, more accurate suggestions
can be calculated. For users with existing listening histories, these can be used to pick
appropriate songs initially.

2.2.2 Sequence-based Context-aware Music Recommendation
2.2.2.1 Summary

Another important aspect of music recommendation is the ability to recommend songs which are
relevant to a listener at a current point in time. This paper, by Wang et al. [6], does this by
inferring a user’s music preference and giving recommendations in real time.

One key point about this paper is that is refers to the context a user is in, rather than a specific
activity they are doing, as the National University of Singapore paper [14] does. This encompasses
more than just an activity they’re doing, but also could relate to their emotion, the time of day,
and their physical surroundings.

The method works by first creating a low-dimensional representation of pieces of music using
neural networks. Songs which should be recommended in the same context should have similar
representations. then infers and models each user’s general and contextual preferences from this.
Their general preference is their music taste over the whole history, and contextual preferences are
based on what they’ve been listening to in their last listening session. Finally songs that conform
to these preferences are recommended in real time.

One thing to note is that it combines both music features with collaborative filtering, since if
a user plays songs together in a similar context, this will influence other users’ recommendations.

2.2.2.2 Observations

This paper made three key observations about a user’s listening data, using existing works on
music recommendations, which are helpful in proving the feasibility of the overall project:

• Every user has a music taste - the type of music they like, which can be inferred from their
listening history [15].

• For different contexts, users will like different styles of music, so their taste is influenced by
the context they are listening in, but is not the same for everyone [16]. An example used is
that someone who likes light music and rock music may like the former when resting, whereas
someone else may like classical music when resting.

• A users listening history can be used to identify contextual preferences for a user, which is
their taste in a particular context [17].

These observations are useful, since they solidify the reasoning that a recommendation system
can be built which takes into account contextual preferences, and therefore can be made unique
for a certain user at a certain point in time.
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2.2.2.3 Evaluation

One thing this paper states is “With the popularity of mobile devices like smartphones, users can
listen to music anytime and anywhere, which makes it difficult to acquire the real-time contexts
directly”. However, in modern times this is less true. Smartphones, along with other devices such
as smartwatches, allow many data to be collected, which can be combined to accurately estimate
a context in real time. This is show in the National University of Singapore paper [14], where
even with very limited data (time, accelerometer data and microphone data), an activity could be
accurately predicted. The Singapore paper was written in 2012, and this paper by Wang et al.
[6] was written in 2018, after devices such as smartwatches had become mainstream. This means
there is much more data available which, if following the learnings of the Singapore paper, means
activities could be learned even more accurately. This would therefore give a method for classifying
some contexts, specifically activities in this case.

Some useful observations from the paper are that music from the same artist tends to have low-
dimensional representations which cluster together tightly, and the same with artists and songs in
similar genres. This means that if a user likes a particular artist in a particular context, they’re
likely to like other songs by this artist. This therefore could lead to the idea of creating single-artist
playlists for a particular context, e.g. ‘Ariana Grande songs to run to’ or ‘Adele songs to study to’.

Another useful observation was that songs listened to by a user form one or multiple clusters,
and songs in a user session cluster tightly. This reinforces the idea of using low-dimensional features
to groups songs, since using actual user data, this paper showed that there was a mathematical
pattern between songs which users listened to in a similar context, and therefore this can be used
to recommend songs.

The final useful observation was that the more dimensions that are added to a song, the more
stable the performance of the system became. This is because more features of the song could be
captured, allowing the song to be more accurately represented. This worked up to a point of about
200 dimensions, at which the system would become less efficient and not increase accuracy.

2.2.3 MusicalHeart: A Hearty Way of Listening to Music

2.2.3.1 System Overview

Musicalheart [18] is a system designed in 2012 which uses a heart rate sensor in a pair of headphones
to monitor heart rate and activity level, and use this to recommend songs in order to keep the heart
rate at an optimal level. It does this by sending data to a server and dynamically suggesting songs
based on the data it is receiving. It consists of three main parts: the Septimu platform, which is
the heart rate sensor in the headphones, the Android application MusicalHeart for heart rate al-
gorithms and server communication, and the web server, which handles the music recommendation.

The system works by first gathering heart rate and activity level data from the Septimu sensor.
The design and testing of this sensor was a major part of the project. However with the increase
in advanced devices which gather this data now widely available, it doesn’t make sense to create
a whole new sensor to gather this data.

The data is then processed on an Android phone in MusicalHeart app. The app received data
streams from the sensor, as well as GPS and WiFi scan results. These then calculate the heart
rate, activity level and context of the user , and then this processed data is combined into a time
series of 3-tuples. It holds the most recent 10 minutes of tuples in order to have an overview of
the users current state. The music recommendation system on the server then recommends a song
based on this state, using a target heart rate which can be set by the user. It uses a biofeedback
loop in order to measure the heart rate and use music to adjust it.

All personal data is calculated on the user’s device, however it is sent to a web server in order to
generate the music recommendations. This therefore means user reactions to songs can be shared
to make the recommendation system more accurate. How this data is stored and kept secure and
private is not described, however is something which should be considered in this type of system.
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This could be done by using methods such as differential privacy, in order to make sure users
cannot be traced from their data, or a strong enough encryption/on-device storage of sensitive
data to make sure it cannot be leaked.

2.2.3.2 Observations

The paper did an empirical study with 37 participants in order to test how accurate the applica-
tion was. It measure heart rate at all three levels of activity both with and without participants
listening to music. They differ the participation on occupation, age, sex, fitness and ethnicity.
However, one critical aspect which they don’t mention is music taste, which presumably differed
because of these other aspects, however is not measured.

One observation the study found was that tempo had a greater effect in increasing heart rate
when the listener is exercising at a high intensity with the rhythm of the music, so listening to
synchronous music. However, pitch and energy had a greater effect on heart rather than tempo at
a lower activity levels. This is why they used a linear combination of these three features, which
correlates more with the intensity of the workout.

Another observation was that the heart rate of users was less accurate for more intense work-
outs. This is due to the sensory using audio signals, which were poorer in high intensity workouts
since the contact of the earphone was looser. It resulted in an average error of about 7.5 BPM.
This is still the case with smartwatches, as demonstrated in a study on the validity and reliability
of Apple Watch heart rate monitoring completed in 2018 [19], however the error was much lower,
at around 1.3 BPM. The MusicalHeart paper also states that IR sensors (which most smartwatches
are) have a smaller error than their sensor.

When evaluating their activities level detection, they tested both single activities as well as
sequences of activities, to check their system could detect when a user’s activity level changes
between the three levels. Their results were very accurate, with 99.1% accuracy in single activities
and 96.8% accuracy in sequences. This therefore shows it is possible to classify to a small range of
activity levels very precisely using their model.

The paper also stated that as more users used MusicalHeart, the quality of recommendations
would increase. This is because it collects the history of people’s responses to different songs, and
so the more responses it can collect, the more accurate the data will be, and the more data it will
have for a wider variety of songs, and therefore the better songs the algorithm can recommend.

2.2.3.3 Evaluation

One important feature of MusicalHeart is that it can only classify an activity into one of three
intensity categories: low (lying or sitting idle), medium (walking) and high (jogging). It also uses
some other calculated features, such as whether the user is indoors or outdoors, velocity they’re
travelling at, and accelerometers to determine if they’re upright or lying down, however these still
only give a very coarse-grained overview of the user’s context. This, combined with the fact that
the application only takes into account a very small subset of a user’s listening history, and does not
take feedback on song recommendations, means that the music suggestions do not have as much
data to learn on compares to other systems such as the Sequence-based Music Recommendation
System analysed earlier [6].

Another limitation of this application is that songs are only represented by three features -
tempo, pitch and rms-energy. This is a very different approach to the Sequence-based Music Rec-
ommendation System analysed earlier [6], which used up to 200 different features, and showed that
using more dimensions of a song gave a more accurate recommendation. This is an area which
could have been expanded upon, since the system for comparing the similarity between two songs
was very simple in comparison to the sequence-based approach.

The MusicalHeart system assumes users have listened to between 20 and 55 songs, however the
average number of songs a person has listened to while using streaming services is much larger,
since the average Spotify user listens to over 25 hours of content a month [20]. Streaming services
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have changed the way people listen to music, and also allow much more data to be collected on
they music individuals listen to. This is because, compared to services like radio, people are in
control of what they can listen to, and therefore allow a musical profile to be built up based on
their listening history, which can be used to learn much more accurately what they like to listen
to in a given context. Therefore, in the decade since this paper was written, the ability to build
a musical profile of a user has become a lot easier, and therefore this could be used to give more
accurate recommendations.

Finally, this paper makes three statements about why smartwatches are an infeasible way of
monitoring heart rate. However, in the 9 years since this paper was published, these are now
obsolete. Firstly, it states “the user has to carry an extra device while exercising”. While this is
technically true, studies have shown that 32.1% of people wear a smart watch or health tracker in
the UK as of 2019 [21], and this number is only set to increase over the next few years [22]. Secondly,
it states that “some of these devices require the user to wear a chest strap”, which doesn’t apply
to modern smart watches or fitness trackers. Finally, it states “the best of these devices cost about
$400, which is prohibitively expensive for the average person”. However, as we have seen by the
percentage of the UK population with a smart watch, they’re becoming more widely available, and
are drastically reducing in price, with fitness trackers available costing less than £50. Therefore,
using a smart watch is much more of a feasible solution in the current technology climate.

2.2.4 Spotify’s Soundtrack Your Workout

In July 2020, Spotify released a webapp which allows users to create a custom workout playlist
based off of their own music taste [23]. A playlist can be built for a specific type of workout by
selecting different options, which generate a customised playlist of songs both known and unknown
to the user.

Figure 2.1: Pick the ‘vibe’ of your playlist

The app has 9 different customisable options - it first starts by asking how long the workout
session should be, between 15 minutes and 2 hours. It then allows the option to have music, pod-
casts or both, and asks whether explicit content should be added. The next stage is to pick the
workout type, which is limited to 8 basic workout types. The next stage is to choose who you’re
working out with, and then to pick the workout ‘vibe’ (as seen in Figure 2.1). Finally, you can
pick either 1 or 2 genres the music should be selected from. You then have the option to upload
a picture and give the playlist a name, and can review the selected options (Figure 2.2)and it’s
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Figure 2.2: Generated Playlist Review Page

generated and automatically saved to your Spotify library (Figure 2.3).

One great advantage of this software is that it leverages the user’s Spotify listening history in
order to generate every playlist. This means that the majority of the songs will be familiar to the
users, as they will correlate with their music taste. This is a benefit, since it’s known that people
perform better to exercise when they listen to music they are familiar with [2].

As seen by the images, the application also uses a very simple user interface, which is easy to
navigate and uses very intuitive options at each stage. This makes it very simple for a user to
generate a playlist, however also means it can be quite restrictive in the playlists which can be
created. For example, if a user likes to listen to a particular artist when they’re running, there is
no option to generate a playlist fitting this criteria. This is where an application without these
restrictions could find this pattern ans user it to generate more user-specific playlists.

One downside with this application is that that it requires a lot of configuration. One of the
main purposes of automating playlist curation is that it takes a lot of time to curate the songs
in the first place, but in this case, there are still up to 9 stages which need to be personalised
by the user, and this needs to be done for every playlist they want to generate. This therefore
requires these steps to be taken before each workout, rather than having the playlist generated
automatically and waiting for when the user wants to start their workout.

Another downside is that the generated playlists are specific for exercising. This is a very com-
mon activity that people use music to motivate them for, however, as stated earlier, there are many
more contexts where music can be helpful, such as sleeping. Therefore, since the application is
only catering to a subset of potential activities, it is losing users who use music in different contexts.

The biggest drawback for workout-based recommendation is that Spotify has no access to a
user’s fitness data. This means that the playlist may be personalised for songs which they like,
but these songs are not tailored to the users fitness history. For example, if a user always slowed
down around 20 minutes into a run, then some more upbeat music may be needed to keep them
on track, however this application has no way of knowing this.
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Figure 2.3: Generated songs

2.3 Background Summary

2.3.1 Common Themes

One common theme throughout the existing systems is that a finite set of contexts are classified.
The sequence-based approach [6] doesn’t put a limit on the number of contexts which a user can
be assigned, however the system does not attempt to classify these by figuring out what they are.
This therefore implies it is a challenge to figure out more than a handful of contexts.

Another common theme found was that adding more users to a system results in better rec-
ommendations. This can be seen, for example, in the National University of Singapore paper [14]
This is because they use a version of collaborative filtering, which is where the listening patterns of
one user can influence the recommendations of other users. Therefore, the more users in a system,
the more data can be collected about in which contexts songs can be best played, and therefore
means recommendations can be more accurate since they’ve got more data to learn from.

Also, the more data a system has on a user, the better recommendations it can give. This
could either be by a user using the system for a long time, or being given a large amount of their
listening history. This is shown in both the National University of Singapore study, as well as in
the MusicalHeart paper, which both conclude that the longer the system is used, the more accurate
their results were in their evaluation.

Another key observation was that more features that are collected about a song, the more
accurately they can be represented. The Sequence-based Music Recommendation System used
up to 200 different features. However, that study concluded that this was the limit to which
increasing the number of features increased the ability for the system to accurately recommend
songs. However, the MusicalHeart application only uses 3 features about each song: tempo, pitch
and rms-energy, suggesting that if the features are well picked, they can still gain good results.

2.3.2 Common Problems

One common problem is that the majority of these solutions try to generate song recommendations
in real time, and through doing this, limit the amount of processing power which can be used, as
well as only being able to recommend one set of songs. The exception is Spotify’s Soundtrack Your
Workout, which generates a playlist. The real-time solution is useful since it they don’t require
user input, and are much more automatic than Spotify’s solution. However, this also means that
the recommendations are not stored, and so if a user has decided prior to playing music what type
of activity they want to do, the system still needs to figure that out. However, the spotify solution
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requires lots of user input, and therefore adds a delay to starting a workout, since the user needs
to select information about their playlist. This is potentially duplicated from when they enter this
information into a fitness tracking app, as well as some of it relating to music tast, which could be
inferred from previous behaviour.

Another common problem is that the majority of solutions do not have access to a large data
set of user listening history, or a large data set of workout history. This therefore means that when
the program initially starts, the recommendations are not very accurate, since there is not a lot
of data to learn from. The only exception to this is the Spotify application, which has access to
a user’s full listening history. However, since this application does not integrate with any kind
of fitness tracking, it’s limited in how personalised the playlists can be, since their only source of
information on the user is music taste.

An important theme throughout the literature is the limited ability to measure success of the
systems. Since every user has a unique music taste, it’s difficult to have a single measurement to
compare all results against. Therefore, some of these systems, such as The National University
of Singapore’s system [14], compare against randomly recommending songs. Comparing different
internal algorithms, as well as other systems, could therefore produce a more substantial evalua-
tion.
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Chapter 3

Implementation

The aim of this project is to generate music recommendations to users for use during workouts,
primarily in the form of pre-generated playlists, and also in real time. This culminated in the
creation of an application named Osti.

3.1 Overview

Figure 3.1 shows the different components which make up the Osti system, including the servers
which fetch listening and workout data from the relevant APIs, compute recommendations and
host the web interface. It also uses a MongoDB database hosted using the MongoDB Atlas cloud
database service. A schema for this database can be seen in Appendix A.

Database
 

   Fetcher
   https://fetcher.osti.uk
   Node.JS + Express.JS

   - Runs fetch on a CRON job every hour

   Recommender
   https://osti-recommender.herokuapp.com
   Python

    - Runs recommendation generation on a
      CRON job every hour
    - Music Recommendation
    - Playlist Generation
    - Initial Data Fetch for Real-time app

   Web Server
   https://osti.uk
   Next.JS

   - Authentication of external APIs
   - API for Spotify control
   - Web UI Hosting

  Web Client

  - Accessed using browser
  - Uses cookies to store user
    session

  Real-time Client

  - WatchOS Application
  - Real-time recommendation
    generated on-device

Spotify API

Google Fit
API Last.FM API

Javascript Server

Python Server

Client

External API

Figure 3.1: System Architecture Diagram
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3.2 Data Fetching Pipeline

The first stage of the application is data collection. In order to be able to reach the largest number
of people, the service we decided to use to collect information about music listening history is
Last.FM, since it can connect with multiple streaming services. These include Youtube Music,
Spotify and Apple Music, which together make up 60% of the music streaming industry [24]. This
allows the maximum potential number of users to use the application, and gather the most data
for the system to learn from. An alternative choice was to user the Spotify API, however this only
gives access to the 50 most recently played songs, whereas Last.FM has an unlimited history.

To collect workout data, the Google Fit API was chosen, since this can connect to a large
majority of smart watches, including Apple Watch, which dominates the market with over 55%
market share [25], as well as most other devices such as FitBit.

The data fetching pipeline can be split into two main events; the initial data fetch, where as
much historical data as possible from the APIs are collected, and the regularly scheduled updates,
which run once every hour to make sure all user workouts and listening history in the system is
kept up to date.

The fetching service is hosted on a separate machine hosted using Heroku, for two main reasons:
to reduce load, since having it with the web server and recommendation generation all on one server
could cause it to be overloaded, as well to remove a single point of failure. This means that if this
service were to go down, existing data would still be able to be used to generate recommendations
for existing users. It uses an Express.JS server, hosted at https://fetcher.osti.uk.

This microservice was written using Node.js, since the APIs used both return JSON files. It
also lead to the decision of using a MongoDB database, which also uses a JSON-like structure to
store documents, and is flexible with different sized data, for example workouts of differing length.

3.2.1 Connecting to APIs

The first step of data collection is for the user to link their Google and Last.FM accounts to the
application, in order for data to be regularly collected. This involves storing an access and refresh
key, which is sent with API requests to prove the application is authorised to access the data.
These are stored in the ‘Users’ database collection.

To keep track of which stage the fetcher is at, an enum is stored in the database, attached to
the user’s profile. These states are shown in a state transition diagram in Figure 3.2. This prevents
race conditions, for example two fetches happening simultaneously, since the value is checked and
updated before any action takes place.

Link Last.FM

Link Google Fit

None

Link Last.FM

Fetch Success

Fetch Failure

Link Google Fit

Fetch Failure

Last.FM Linked

Google Fit Linked

APIs Linked Fetching Last.FM Fetching Google Fit Fetched

Fetch Error

Fetch Success

Initial Connection Stage

Update Stage

Figure 3.2: State Transition Diagram of fetcher states
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3.2.2 Listening History Collection

Once access has been granted, the process of data collection begins. On the first run of the fetching,
a users entire LastFM history is fetched, which consists of some generic track information, as well
as when it was listened to. This gives the maximum amount of context possible for the system
to infer the user’s music taste from, even if some of these songs have not been used in a workout,
since it’s been shown that users workout better to songs they’re familiar with [2].

These listens, referred to by Last.FM as ‘scrobbles’, then have their Last.FM identifier used to
check if the track already exist in Osti’s database. For any unknown track, the Spotify Search API
[26] is used to collect basic information such as artists, album, duration and Spotify identifiers. If
the song cannot be found on Spotify, a track is still created in the database, just without any of
the information which would be retrieved from Spotify, and the user has the ability to connect this
manually from the web interface, described in Section 3.6.5. This is done by simply copying the
share link for the song from Spotify, however, is rarely needed, since at the time of writing, only
1186 of 14780, around 8%, of tracks found through this method were not able to be identified, and
in many cases this was because these songs are not available on Spotify, and have been scrobbled
from other sources.

Once the tracks have been located on Spotify, the API is used again to get the audio features
for each track. These features, and there descriptors, are described in Table 3.1. In the rare case
that Spotify hasn’t generated features for a song, which at time of writing has occurred for 8 of
the 180998, or 0.004% of tracks, then the fields are left blank, and the songs are not recommended
until the features can be identified.

These tracks then have their features saved to the database, along with the Last.FM scrob-
bles, with a reference to either the pre-existing or newly created track with features in the database.

This process then repeats hourly in order to collect scrobbles as soon as a user listens to music,
however the API is only queried back to the last recorded scrobble in the Osti database. This
decision was made, instead of recording the last request, in case the Last.FM API doesn’t always
update instantly.

3.2.3 Workout History Collection

The next step is to fetch workout data from the Google Fit API. This data is limited to the previous
year by Google, however all the available data is collected, even for workouts where music wasn’t
listened to, since it allows the system to later build a clearer image of user workout features, such
as average workout length, heart rate, or calories burned, during a particular workout type.

Once these workouts are fetched from the API, another call is made for each workout to collect
more detailed data points at 10 second intervals. This time value was chosen since shorter intervals
wouldn’t increase accuracy, and instantaneous values such as heart rate and speed, don’t fluctuate
massively every 10 seconds, so this level of detail gives a good overview of a workout. Other values,
such as calories and distance travelled are cumulative, and therefore the interval time doesn’t make
a difference.

The workout object initially retrieved is then augmented with this data, and added to the
database.

3.3 Music Recommendation Engine

The second major stage of the implementation was to create a system which suggested the ideal
tracks for each user for a specific workout. These tracks would then go on to either be arranged into
a playlist, or provided to an application which would recommend the best of these songs in real time.

Recommendations are able to be generated as soon as a user has listened to a single song during
a particular workout. They become more accurate over time as more songs are added, but the use

23



Feature Description Data Type
Acousticness A confidence measure from 0.0 to 1.0 of whether the track

is acoustic, where 1.0 is high confidence.
Float

Danceability How suitable a track is for dancing, based on a elements
such as tempo, rhythm stability, beat strength, and over-
all regularity. Values range from 0 to 1, where 1 is most
danceable.

Float

Duration The length of the track in milliseconds. Integer
Energy A perceptual measure of intensity and activity, where en-

ergetic tracks feel fast, loud, and noisy, based on features
such as dynamic range, perceived loudness, timbre, onset
rate, and general entropy.

Float

Instrumentalness Whether a track contains vocals, so the closer the value is
to 1.0, the more likely the track has no vocals.

Float

Key The key the track is in, where integers map to pitches using
standard Pitch Class notation, such that 0 = C, 1 = C]/D[,
2 = D, and so on.

Integer

Liveness Dtects the presence of an audience in the recording, where
a value above 0.8 provides strong likelihood that the track
is live.

Float

Loudness How loud a track is, averaged across the track, in decibels
(dB), usually ranging between -60 and 0 dB.

Float

Mode Whether a track is major or minor, where major is repre-
sented by 1 and minor by 0.

Integer

Speechiness The presence of spoken words in a track, where values above
0.66 describe spoken word tracks, and values below 0.33
represent music and other non-speech-like tracks.

Float

Tempo The overall estimated tempo of a track in beats per minute
(BPM).

Float

Time Signature An estimated overall time signature of a track, which is how
many beats are in each bar.

Integer

Valence A measure describing the musical positiveness conveyed by
a track, where values closer to 1.0 sound more positive.

Float

Table 3.1: Description of the audio features used to represent tracks [27]

of track features listed in Table 3.1, along with collaborative filtering from version 2 of the engine
onwards, allow a large number of recommendations can be made from even a small subset of user
listening history for that workout.

All 5 versions are generated regularly once a day, however only the final user-feedback version
is shown to the user, since it builds upon the majority of the others. This can be updated in
frequency, however through user testing it was discovered the rankings don’t change very much on
a smaller scale. The only exception to this is with the introduction of user feedback, where songs
can be given a positive or negative boost. In this case, the engine can be triggered more frequently.

The system is hosted on a separate Heroku machine, and is written in Python using a Flask
server, along with Celery for task management. The separate server, as before, means that it
doesn’t interfere with the fetching of data from the API, or displaying information to the user via
the web interface. The use of Celery for task management also means that tasks can be queued if
multiple requests are sent at once, which is useful for when users can trigger recommendations, in
order to prevent machine overload.

We’ll now look at the iterations of this algorithm, and the techniques used to provide the most
appropriate recommendations for each user-workout pair.
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3.3.1 Version 1: Popularity Based
The first version of the recommendation engine was the simplest implementation. It is a count-
based method which returns the most frequently listened to tracks for a user during a particular
workout as the recommendations. This is a good baseline to compare other iterations of the engine
against, and also was useful to display these results to the user so they can give boosts to some of
their most frequently listened to tracks.

One advantage of this iteration is that it can run independently for each user, since the rec-
ommendations only rely on the history of the user who they’re being generated for. However, for
the explanation, we’ll describe how we generate it for all users at once, since this will assist in the
explanations of the further versions of the engine.

It works by downloading the workout and listening history for the target user from the database.
The workout types, users and songs are then one-hot encoded, which is useful when creating the
utility matrix of preferences. The utility matrix generated here is an extension of the idea described
in Section 2.1.1, since another dimension is added, so it is indexed firstly by user, then workout
type, then track. This is a sparsely populated matrix, but allows an easy access to which users are
listening to which songs for each workout, and is used frequently in the literature [7].

Let the listening history of user i be li, which consists of n listens li1, ..., lin. The workout history
is similarly defined as wi, consisting of workouts wi

1, ..., w
i
n. The start time of a listen is defined

as s(lim), and the start and end times of a workout are similarly defined as s(wi
m) and e(wi

m). To
simplify the model, the end time of listens are not considered at this stage.

We then iterate over the ordered li and wi simultaneously, and if a listen falls within the time
frame of a particular workout, so s(wi

m) < s(lin) < e(wi
m), then the appropriate value in the utility

matrix is incremented. By iterating over these together, we reduce this problem to linear complex-
ity, based on the number of listens they have. Once the utility matrix of preferences is calculated,
then a maximum of the top 100 songs for each user and workout are selected and saved to the
database as recommendations.

These recommendations were utilised later on in the user testing stage, since showing a user
their most popular tracks for a particular workout will allow them to rank whether on not they
agree they’re something they want to listen to in that particular context

3.3.2 Version 2: Content-Based Recommendations
The second iteration of the music recommendation engine incorporates the features of a track de-
scribed in Table 3.1. These features can be split into two sections: learned features, which have
been predicted, for example, by a machine learning model, and definite features, such as tempo
and key, which are known.

The utility matrix of preferences is calculated in the same was as in version 1 of the algorithm,
however the indexing order is switched, so that it’s indexed by workout type, then user, then track.
This is useful, since versions of the engine onwards from here will use collaborative filtering (CF),
and since CF is done on a per-workout basis, it made sense to group the user-track arrays by
workout in order to optimise array accesses.

The next step is to generate the trackset Tu
w, which is the collection of tracks which could

potentially be recommended to the user u for a particular workout type w. This is generated from
the union of three smaller sets:

• tuw - A set consisting of the tracks listened to by user u during workouts of type w

• tw - A set consisting of the tracks listened to during workout type w by all users

• tu - A set of the tracks listened to by user u, both during not during workouts

tuw and tw are generated using the utility matrix of preferences, and is generated directly from
the database data, since it doesn’t rely on workout data. They each also contain a popularity
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metric, which represents the frequency at which they’re listened to in their respective set. This is
used later so that more commonly listened to songs have a higher probability of being recommended.

These three sets are then used to form what the overall trackset for user u and workout w, Tu
w,

where:

Tu
w = tuw ∪ tw ∪ tu

To find the ideal recommendations from this trackset, the first step is to find a representation,
ruw, of the music the user u usually listens to during the particular workout type w. This is cal-
culated using tuw, by taking a weighted average of each of the features listen in Table 3.1 for each
track, weighted by the frequency they’ve listened to the track during that workout. This means
that a song which is listened to frequently by the user during that workout will contribute more
to the representation that one which has only been listened to once.

The final stage is to find the ideal songs from trackset Tu
w for the user-workout combination.

This is achieved by calculating the cosine similarity between the representation ruw and every
potential track in Tu

w (as described in Section 2.1.5.2), and recommending the tracks which have
the greatest cosine similarity. This can be formalised as:

csim(ruw, (T
u
w)j) =

n∑
i=1

(ruw)i × ((Tu
w)j)i√

n∑
i=1

((ruw)i)2 ×
√

n∑
i=1

(((Tu
w)j)i)2

To calculate the k values with the greatest cosine similarity, we can repeat the following equa-
tion, in each iteration removing the value with the greatest cosine similarity from Tu

w:

argmax
j

(csim(ruw, (T
u
w)j))

The resultant k tracks with the greatest cosine similarity to ruw are then returned as the rec-
ommendations for user u and workout type w.

3.3.3 Version 3: Hybrid Collaborative Filtering and Content-Based Rec-
ommendations

The previous version of the music recommendation engine had an unintentional element of col-
laborative filtering, since songs which other users had listened to during the same workout type
recommendations were being generated for were considered in the trackset the recommendations
are being source from. However, with a small user base, there was such a small overlap in songs
listened to by multiple users that this wasn’t really being utilised in the recommendations (as of
time of writing, only 113 tracks had been listened to by more than 2 users).

Therefore, the solution was to introduce an external data source that count introduce many
new tracks into the system which can be recommended to users. This allows new tracks to be
discovered by users, and since there are many more tracks in the system, these are more likely to
have a higher similarity to their ideal workout song, and therefore will be more suited than the
limited number of tracks which exist in the system.

Two main potential datasets were considered to incorporate this data into the system. How-
ever, finding the most appropriate dataset was challenging, since there is no explicit dataset which
links listening history to context, since the are has not been researched very extensively. The first
dataset considered was the Spotify Music Streaming Sessions Dataset [28]. This consists of around
130 million listening sessions and their corresponding user interactions. However, there way no
way to link these sessions to a particular workout, and therefore it wouldn’t be very useful in the
context of collaborative filtering with respect to workout type.

Therefore, the dataset chosen was the Spotify Million Playlist Dataset [29, 30]. As is implied by
the name, this dataset contains a million user-created Spotify playlists, including their name and
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Workout Type Number of Playlists
Running 7408
Sport 4346
Sleep 2577
Yoga 792
Dancing 567
Walking 445
Cycling 131
Swimming 76
Strength Training 72
Pilates 28
Rowing 11
Mindfulness 10

Table 3.2: Frequency of Workout Types found in Million Playlist Dataset

full, ordered tracklist. This meant that, despite the playlists not explicitly representing a context,
since many users create playlists for working out, and name them with something similar to the
workout type the playlist is created for, these could be inferred as songs which at least one user
finds appropriate to listen to for the corresponding workout. Out of the million playlists, 16,997
contained a common workout type in the name, with the cumulative length of these playlists being
913,726 tracks, of which 168,222 were unique. The distribution of these tracks for each workout
can be seen in Table 3.2.

These playlists were incorporated into the version 2 of the music recommendation engine to
increase the number of tracks which could be recommended for each workout type. This was done
by treating each playlist as a workout by a different user, since there was no way to track if multiple
playlists belonged to the same user, due to the anonymisation of the dataset. These then meant
that the subset of the trackset tw, which consists of the tracks listened to during workout type w
by all users now consists of many more songs, and these are all potential recommendations to the
user.

3.3.4 Version 4: Reintroducing Popularity Metrics and Categorical Fea-
tures to the Hybrid System

The next stage was to introduce the popularity metric mentioned in the creation of version 2 of
the engine. This metric is calculated slightly differently for the three subsets of the trackset tuw, tw
and tu.

For tuw, the ranking of track (tuw)i is:

2 + (1.5× count((tuw)i)

max
j

(tuw)j
)

Where count((tuw)i) is the number of times user u has listened to track i during workout w.

For tw, the ranking of track (tw)i is:

count((tw)i)

max
j

(tw)j

Similarly, for tu, the ranking of track (tu)i is:

count((tu)i)

max
j

(tu)j

Where count is defined similarly to tuw in both cases. The ranking is increased by constant
factors for tuw since it’s been shown that songs which a user knows are more effective in motivating
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Boost Value Effect
-2 Track should never be recommended for this workout type
-1 Track should be recommended less frequently for this workout type
0 No boost
1 Track should be recommended more frequently for this workout type
2 Track should always be recommended for this workout type

Table 3.3: User feedback loop boost effects

them during exercise [2], and also that users have a specific music taste for different workouts
[15, 16], and therefore the tracks in tuw are better recommendations for the user. These metrics
are then used as another weighting for the predictions, and result in tracks which are listened to
the most frequently being more likely to be recommended, since they’re known to be liked in this
context.

In this version of the music recommendation engine, we also added in track artist as a cate-
gorical feature for each song. This is done by creating an artist map for each user-workout pair as
recommendations are being generated, which contains how many tracks by each artist a user has
listened to in the corresponding context. This is then used as an extra factor in weighing predic-
tions, since it’s been shown tracks which a user has more familiarity with are more likely to increase
workout performance [2]. Add one smoothing was used here to make sure that artists which are not
listened to frequently still appear in the recommendations, however are just not weighted as highly.

Adding in album here was also considered, however it was decided against due to the increase
in computational power required, along with the fact that albums are usually performed by one
artist, and therefore would just be a repeat of the calculations for artist weightings discussed above.

The method of calculating the artist multiplier is similar to the Jaccard Index described in
Section 2.1.5.1. However, instead of representing each artist as a binary of whether the user listens
to them, the number of listens to that particular artist is taken. Then to calculate a track’s artist
multiplier, the sum of all artist totals in the track is taken, and then divided by the maximum artist
total. This was chosen instead of the sum of all listens since it gives the multiplier a value closer
to 1, therefore not reducing the score as much. This therefore results in a maximum multiplier as
the number of artists on the track, however realistically this will be a number smaller than 1, since
most tracks have one or potentially two artists.

3.3.5 Version 5: Adding a User Feedback Loop

The final version of the music recommendation engine incorporates a user feedback loop into the
algorithm. The reasoning behind this was that recommendations are subjective, and despite usu-
ally attaining a good prediction from the methods above, users may wish to alter these suggestions.
There may be a predicted track which a user doesn’t think is appropriate for a playlist, or on the
other hand, one of their favourite tracks for a particular context may not be included.

Therefore, the solution was to add a user feedback system, which is early on in the recommen-
dation pipeline, and would allow users to alter any tracks for which they do not agree with the
recommendation score. The loop was introduced in this stage, rather than at a the later playlist
generation or live recommendation stages, since it means that users don’t need to worry about al-
tering track suggestions during their workout, and also adds less volatility to the recommendations
since the set number of recommendations given to these later services will still be maximised.

A piece of user feedback is referred to as a boost b, and can be given one of 5 values, described
in Table 3.3.

These boost values are taken into account in the final stage of the music recommendation
engine, appropriately moving a track up or down in the order of recommendation such that tracks
appear to the user’s preference. The formula used to move these tracks is as follows:
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boost((Tu
w)i) = max(0, s((Tu

w)i)) +

(
b((Tu

w)i)×
max

i
(s((Tu

w)i))

2

)
Where s((Tu

w)i) is the score generated by version 4 of the algorithm for user u, workout w and
track i, and b((Tu

w)i) is the boost value assigned to the same song.

This equations essentially moves any tracks with a +2 boost to the top of the recommendations,
and removes any tracks with a -2 boost from the set of recommended tracks. Songs with no boost
are not effected, and songs with a +/- 1 boost are move up or down the recommendation list by
half the score of the top recommendation, which usually results in a significant move.

The interface for users adding these boosts is discussed in Section 3.6.2.

3.4 Playlist Generation
The next stage was to generate the ‘ideal’ playlist for a particular workout. This uses the top
songs recommended by version 5 of the music recommendation engine in order to bring the work-
out vitals of heart rate, calories burned, distance travelled, speed and number of steps closest
to the user’s target values. By default, it uses target values for these workout features that are
predicted by the system, however these can also be manipulated by users. From these, it finds the
most appropriate songs to keep a user on target for the workout, based on metrics such as their
historical effect on the workout features, tempo and positioning in in the list of recommended songs.

The Heroku machine used for the music recommendation engine is shared for this service, since
they’re usually executed sequentially, and are both written in Python.

3.4.1 User Workout Targets
The first stage of generating a playlist for a particular user-workout pair is to calculate the target
values of the following 6 workout features:

• Workout Length

• Number of Calories Burned

• Heart Rate

• Distance Travelled*

• Speed*

• Number of Steps Taken**

* - This feature is only used for workouts which require some kind of movement, such as indoor
or outdoor running, cycling or rowing, where data is available.

** - This feature is only used for workouts where some kind of on-foot movement occurs, such
as walking or running.

The initial values of these targets are calculated by simply taking an average of each feature for
each workout, and then calculating the average of these collective averages. These values (exclud-
ing workout length and heart rate) are then multiplied by a multiplier, which has a default value
of 1.05, in order to continually push the user to increase the effort put into their workout.

However, these averages may not be useful for every workout - for example, if a user likes doing
both 5km and 10km runs, then their average may be somewhere in the middle. Therefore, all of
these values are able to be customised by the user. This can be done on the web interface, as
described in Section 3.6.3. Multiple features can be adjusted to fit a user’s desire, and the playlist
generation algorithm will adapt to generate playlists to more accurately keep a user to these targets.
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Figure 3.3: Workout Profiles showing the dimensions of Heart Rate and Calories Burned. Left:
Instantaneous Feature (Heart Rate), Right: Cumulative Feature (Calories Burned)

These targets are generated whenever a playlist is created, and are updated in the database,
so the most recent values are always available to the user. If a user has overridden these values,
those are displayed and used, however if they reset them, the values don’t need to be recalculated
as a copy of the current base ones are kept in the database.

3.4.2 Workout Profiles

The next stage of playlist generation is to find patterns a user follows during a particular workout
type. This will allow a profile to be built up of how a user behaves on an average workout with
respect to up to five of the features of heart rate, calories burned, distance travelled, speed and
steps taken. To find these patterns, each historical workout of a particular user is analysed, and
for each 10 second interval, the average of these features is averaged over each historical workout.

Once these workout profiles are created, they need to be scaled down to be the same length
as the target workout length. There were two methods considered to do this: scaling the entire
profile down to this target length, or slicing the profile at the desired length. The upside of the
first method was that it kept all of the data. However, since the data is being stretched, it won’t
accurately represent what actually happened in a workout. For example, if we have a 60 minute
workout that we want to scale to a 30 minute target workout, then the total calories would stay
the same, however it would be expected to burn them in half the time, which is not reasonable.
Therefore, the option to slice the profile at the desired length was chosen.

With this decision, there is the case where the target length is longer than any previous work-
out. In this case, since there is no data for feature values at this time, the average feature values
calculated in Section 3.4.1 are used instead.

The workout profile Pu
w for user u during workout w can be formalised as:

Pu
w = (puw)0...(p

u
w)n

Where n is the target length of workout of type w for user u, and the value (puw)i is a vector
of up to 5 dimensions, one for each workout feature which is available for the workout type w,
representing the average value of that feature from time point i to i+ 10, measured in seconds.

Figure 3.3 shows a basic example of how a workout profile could be visualised over time for
heart rate (an instantaneous feature) and calories burned (a cumulative feature).

3.4.3 Workout Deltas

Once a profile has been built for the user-workout pair, the difference between the workout profile
and target value at each time point throughout the workout needs to be calculated. The first thing
we need to do for this is to generate a target vector, where we spread the user-workout targets from
Section 3.4.1 over the target workout length. This is done differently for instantaneous features
(heart rate and speed) and cumulative features (calories burned, distance travelled and steps taken).
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Figure 3.4: Target Heart Rate and Calories Burned over time. Left: Instantaneous Feature (Heart
Rate), Right: Cumulative Feature (Calories Burned)

For instantaneous features, the target value will stay constant throughout the whole workout.
For example, the if the user’s target heart rate is 110bpm, then the target at each 10 second interval
will also be 110bpm, therefore the target vector is trivial to generate.

For cumulative features, the target value is a sum over the whole workout. For example, if the
user wants to burn n calories over a workout of m minutes, then they will need to burn n

6m calories
in each 10 second interval, and the vector of length 6m will have each value as n

6m .

The implementation of this section is designed to keep the system extensible, by using target
vectors and not just a single value. A possible extension where targets do not need to be constant
over time is discussed at the end of this paper in Section 6.2.1.

The target vector can be formalised as:

T u
w = (τuw)0...(τ

u
w)n

In this case, all values (τuw)i will be identical, however as mentioned above this allows for the
targets to be extended to also include different workout types where targets change over time.

Figure 3.4 shows the target vitals visualised on the same graph as in the previous section.

The next step is to work out the difference between the target of each workout feature, (τuw)i,
and the equivalent value in the workout profile at the same time point (puw)i, where both of these
are vectors of the same size, since they hold the same features. This again is calculated slightly
differently for instantaneous and cumulative features.

For instantaneous features, we calculate the ‘delta’ between the target vector at time point i,
(τuw)i, and the equivalent value in the workout profile (puw)i simply by calculating δuw = (τuw)i−(puw)i.
This results in the change in each instantaneous value over the 10 second interval. Using heart
rate as an example, at time point 0 the user’s heart rate in the workout profile is 110bpm, and the
target value is 125bpm, then the delta at time point 0 for heart rate is 125bpm - 110bpm = 15bpm.

For cumulative features, calculating this delta doesn’t make as much sense. This is because
we sum the deltas over time, and therefore they’ll usually be the same for a particular workout
over a particular time period with a similar amount of effort put in from the user. Taking calories
burned as an example, over a 10 second interval, we want to find the number of calories which
need to be burned, which can be calculated by δuw = 2(τuw)i − (puw)i. For example, for the interval
between time point 0 and 10, the target is to burn 2 calories, however in the workout profile, only
1.5 calories are burned. This means to compensate for this under-performance, we want to try and
burn 2.5 calories in this interval. This will then average out over time such that the target value
for number of calories burned is reached, and is illustrated in Figure 3.5.

The overall set of workout deltas for a workout of type w, for user u, and of target length n is
formally represented as:

∆u
w = (δuw)0, ..., (δ

u
w)n
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Figure 3.5: Workout Deltas for Heart Rate and Calories Burned over time. Left: Instantaneous
Feature (Heart Rate), Right: Cumulative Feature (Calories Burned)

Figure 3.5 shows the workout deltas visualised on the same graph as the workout profiles and
target values. It shows how the deltas of instantaneous features (heart rate, left) are the opposite of
the difference between the target and workout profile, centered around zero. However, for cumula-
tive features (calories burned, right), the workout deltas is centered around the target value. This
is because these features are summed up over time, and therefore the number of calories burned
over a subset of time is useful, as this can directly correlate to the number of calories burned over
the duration of a song. However, for instantaneous features such as heart rate, the effect the song
has on heart rate (increase or decrease) is more useful than the exact heart rate change.

3.4.4 Song Deltas – Coarse Grained

The penultimate stage is to calculate the equivalent deltas as above on the songs which have been
listened to during workouts. These deltas are then stored in the database so they they can be used
by other users who have that same song in their recommendation set, since the effects of a song
on one user is usually similar for other users. This also means they only need to be calculated for
any new workouts which enter the system, which will be since the user last generated a playlist for
the current workout type.

These deltas are calculated in a different way to the workout deltas, and again are calculated
differently for instantaneous and cumulative features. For instantaneous features, the value of the
feature at the start of the song, s and at the end of a song, e are taken, and the delta is calculated
by e− s. So for example, if a user’s heart rate was at 110bpm at the start of a song, and 115bpm
at the end, then the song delta for heart rate would be +5bpm.

For cumulative features, the sum of the feature over the length of the song is calculated. So for
example, if a user burns 30 calories over the duration of a song, then this value would be assigned
as the calorie delta.

The decision to make these deltas coarse grained was to reduce the amount of data which
needed to be stored in the database, and allowed for faster playlist generation at the final stage,
since only one comparison per song was needed rather than multiple. However, a more fine grained
approached, where the songs deltas are computed at 10 second intervals, is explained below, and
could potentially be used in further iterations once more data becomes available, or when more
computing power is available.

3.4.5 Song Deltas – Fine Grained

Since we can also gather the effects of a song on workout features at 10 second intervals, we can
take a more fine-grained approach in order for the songs to be more accurately predicted. In this
case, the links between the different parts of a song and a user’s workout performance can be more
accurately detected, leading to more accurate predictions, to keep users at their ideal performance.

The differences to coarse grained song deltas are that the deltas are calculated at each 10
second interval, rather than across the whole song. For instantaneous features, the delta at time
point i is calculated by measuring the change in a features value from time point i to time point
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i+9 (since we use 10 second intervals). Taking heart rate as an example, if a user’s heart rate is
at 110bpm at time point 0, and 115bpm at time point 9, then the delta assigned to time point 0
would be +5 bpm, indicating that those first 10 seconds of the song increase the heart rate by 5bpm.

For cumulative features, the delta at time point i is calculated simply by finding the sum of
the feature between time points i and i+9. So for example, the delta at time point 0 for calories
burned would be the sum of calories burned from time point 0 to time point 9, indicating how
many calories are usually burned within the first 10 seconds of the song.

3.4.6 Using workout deltas, song deltas and recommendations to gener-
ate a playlist

The final stage of playlist recommendation is the generation of the ordered list of tracks using the
workout and song deltas described in Sections 3.4.3 and 3.4.4 respectively, and the recommenda-
tions from the music recommendation engine described in section 3.3.

Firstly, the recommendations generated earlier by the music recommendation engine for the
current user-workout pair are retrieved from the database, as well as the coarse-grained song
deltas for any song in this recommendation list. There are 4 types of song data which are used,
which are described in Table 3.4.

Same Workout Different Workout
Same User 0.5 0.2
Different User 0.2 0.1

Table 3.4: Song Delta Combinations and Weightings

If a user has listened to the current song during the workout type the playlist is being generated
for before, then those deltas are used, since they are most relevant to the user. However, since
recommended songs have not always been listened to by the user, or may have been listened to for
a different workout, this cannot be relied on. Therefore, track recommendations whose deltas have
wither the workout or user in common are considered, however are weighted lower than the original
deltas. Recommended tracks for which no deltas exist with either the same user or workout are
weighted even lower.

Once these deltas have been collected, the next stage is to predict which song out of the poten-
tial 200 returned by the music recommendation engine should be queued next in the playlist. To
do this, we keep a pointer of what position in the playlist we are at, which can be represented by
p. Then, we iterate over the set each potential song, represented by S, and compare the workout
deltas over the length of the song, (δuw)p, ..., (δ

u
w)p+l(si) to the song delta of that song d(si), where

l(si) is the length of the ith song, and d(si) is the song delta of the ith song.

To compare these deltas, we calculate the equivalent deltas from the workout deltas, such that
for instantaneous features, we find the change in feature from the start of the song to the end of the
song, and for cumulative features, we find the sum of the feature over the duration of the song. We
then use the cosine distance as defined in Section 2.1.5.2 to find the distance between the workout
delta and song delta for each song. This is repeated three times, for the set of deltas with the same
user and workout, for the set of deltas which have either the same user or same workout, and for
the set of deltas with neither the same user nor same workout. Any recommendation which does
not have any deltas is given a distance of 1, which is the maximum potential distance.

The weighted cosine distances of all three possible sets are then added together in the ratio
5:2:1 as described above in Table 3.4, giving the highest weight to the deltas which were calculated
by the user completing the appropriate workout.

However, this is not the only metric used to calculate which song should be queued next. The
next metric incorporated is the difference between heart rate and song tempo. This is used since it
has been shown that the tempo of a track can help to raise or lower a user’s heart rate [31]. This
is added as a penalty using the formula:
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Figure 3.6: An example of a track being matched so a subset of the Workout Delta during Playlist
Generation. Left: Instantaneous Feature (Heart Rate), Right: Cumulative Feature (Calories
Burned)

0.3× |Tempo− Target Heart Rate
Target Heart Rate

|

The other metric incorporated is the position of the song in the rankings from the music recom-
mendation engine. This is added as a penalty to the overall score such that a song has a penalty
of n

100000 , where n is the position of the song in the ranking. The constant weightings of these
metrics were empirically tested as to equally balance them.

Once all of these metrics are combined, the song in the recommendation set which has the min-
imum penalty is selected, and this is pushed to the playlist queue. The pointer p is then increased
by the duration of the song, and the process is repeated until p is greater than the target length
of the playlist.

Figure 3.6 shows a single track of length t1, with song delta in orange, being matched to the
workout delta in green. This track matches the workout delta closest, and therefore is queued next.

The playlist is then saved to the database, and can be viewed by the user on the appropriate
recommendations page in the web interface, as well as be saved to their Spotify account, as detailed
in Section 3.6.4. The 10 most recent unique playlists are saved for each user-workout pair. Playlists
are evicted with a first in first out eviction policy. However, if a playlist is generated which has an
identical tracklist to one which already exists in the database, the time it was generated is updated
to the current time, but it’s not duplicated in the database, and no playlist is evicted. This allows
users to go back and look at historical playlists.

Having access to historical playlists is important, since over time ,as more data is collected
and more songs enter the system, it’s possible that generated playlists could change as more ideal
songs become available. Also, since users can change the target values for their workouts, they can
generate multiple playlists. One use case for this may be to generate a playlist for a 5km run and
another for a 10km run, which both have appropriate workout feature values.

3.5 Real-time Track Recommendations

The next challenge was to adapt the project so that it could recommend the ideal track to a user
in real-time. This was implemented in the form of an Apple Watch application, written in Swift.
The foundation of the application was based on a watchOS tutorial by Apple called SpeedySloth
[32], but integrated the Osti recommendation system to use the heart rate, calorie and distance
data on device to alter the recommendations and play the appropriate songs to users in real time.

3.5.1 Initial Data Collection

The first state of the application once the user opens the application is to enter their user ID, and
then select which type of workout they are completing. This is displayed in Figure 3.7a.
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(a) User selects appropriate workout type (b) User vitals shown during workout

Figure 3.7: Osti real-time WatchOS application screenshots

Value Description
Playlist An ordered list of track identifiers describing the most recent suggested

playlist for the given user-workout pair
User Targets The target values of heart rate, total calories to burn, and total distance

to cover
Recommendations An ordered list of the top 200 tracks recommended for this user-workout

pair
Track Data Map A map of track information, such as duration and tempo, indexed by

track identifier
Track Deltas A map of each track’s song deltas, indexed by the two/one/zero in com-

mon system described in Section 3.4.6

Table 3.5: Initial data transferred to Osti real-time application before a workout is started

Once this has been selected and a workout starts, the application sends a POST request to the
osti-recommenderHeroku machine, as described in Section 3.3, to the endpoint get_initial_data.
This returns the values described in Table 3.5. This data is then transferred to internal data struc-
tures in Swift, to be used throughout the lifetime of the application.

3.5.2 Initial Tracklist

The initial data retrieved includes the suggested playlist, which is used as the foundation for the
recommendations of the real-time application. These tracks are then played to the user using their
Spotify account.

The endpoints which control a user’s Spotify playback are all contained on the Javascript ma-
chine which is hosting the webapp, since this webapp already had integration with Spotify due
to the playlist saving feature described later in Section 3.6.4. These endpoints are documented in
Table 3.6.

To play the appropriate initial tracks for the user, either the /playTracks or /playPlaylist
endpoint is used. The /playPlaylist is preferred, since it gives a nicer experience for the user,
showing them where the playlist is coming from. However, if a user has not generated a playlist on
Spotify for this particular workout, then the tracks are individually queued using the /playTracks
endpoint instead. They both result in the initial tracklist being played to the user on Spotify.
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Endpoint Method Parameters Description
/currentlyPlaying POST uid - User ID Returns the Osti Track ID of

the currently playing song for the
given user, null if nothing is play-
ing, or song is unknown

/playPlaylist POST uid - User ID
pid - Playlist ID Starts playing the given playlist

to the given user

/playTracks POST uid - User ID
tids - List of Track IDs Fills the queue with the given

tracks and starts playing them
for the given user

Table 3.6: Spotify control endpoints

3.5.3 Calculating Ideal Tracks

Once the initial tracklist has started playing, then the application needs to start analysing how a
user is progressing with the workout, and update the music playing in accordance with this. The
first stage of doing this is to calculate which are the ideal tracks out of the set of recommendations
at the current moment in time for the user. This is calculated every 10 seconds, and the results
will determine whether the music will change.

To calculate the ideal tracks, the application uses a similar method to the playlist generation
described in Section 3.4.6. However, instead of using the workout deltas, which describe the av-
erage user workout at a certain time, we use the real-time user deltas. Due to limitations of the
HealthKit API, only three of five of the metrics used for playlist generation can be used in real-
time; heart rate, distance travelled and calories burned.

The heart rate delta is calculated in the following manner:

(δuw)hr = Target Heart Rate− Current Heart Rate

The calorie delta, which is how many calories should be being burned every 10 seconds from
now on, is calculated using the following equation:

(δuw)cal =
Total Target Calories + Calorie Deficit

Target Length in Minutes× 6

Where Calorie Deficit =

(
Elapsed Time in Seconds
Target Time in Seconds

× Total Target Calories)− Calories Burned So Far

The distance delta, which is how far should be travelled every 10 seconds from now on, is
calculated similarly to calorie delta, using the following equation:

(δuw)dist =
Target Distance + Distance Deficit

Target Length in Minutes× 6

Where Distance Deficit =

(
Elapsed Time in Seconds
Target Time in Seconds

× Target Distance)−Distance Travelled So Far

These deltas are then compared to each song delta, similarly to Section 3.4.6, and the cosine
distance between each track and the deltas are calculated. This is repeated three times, once for
song deltas for the same user-workout pair, once for song deltas with one of either the user or
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Figure 3.8: Real-Time Track Switching Example

workout the same, and one for song deltas with neither the same. The cosine distances for these
are then weighted using the ratio 5:2:1.

Once this has been calculated for a track, then the tempo distance and position in the recom-
mendation list are also taken into account, using the same equations as in Section 3.4.6.

3.5.4 Switching Tracks
The previous section has many similarities to playlist generation. However, the next step is differ-
ent. Instead of just picking the track which is most ideal for the current position, the algorithm
has to make a decision to either keep playing the current track, or skip to a more ideal one.

The application first gets the currently playing track using the /currentlyPlaying endpoint.
If this song is in the top 10 ideal songs calculated in the previous section, then nothing happens,
and the track keeps playing. However, if it is not ideal, then a counter wrongCount is initialised
and incremented by one. Once this counter exceeds 3, which means that the track has not been
ideal for 30 consecutive seconds, it’s decided that the song playing is not ideal, and needs to be
changed to adjust the user’s activity to a more appropriate range. First, the counter is reset, and
then the application takes the top recommended tracks and repeatedly adds the top track from
this to a queue, until the length of the queue is at least as long as the length of the target workout.

This queue of songs is then played to the user on Spotify, using the playTracks endpoint. Since
these songs are the most likely to bring their heart rate, calorie burn rate and distance covered
closer to the target values, the user should return closer to their target. Once this happens, the
ideal songs will change again to try and keep their workout performance stable. This process will
repeat until the length of the duration of the workout.

Figure 3.8 illustrates an example of this using heart rate. Initially, song s1 is playing, which
would be equivalent of a song from the initial playlist. However, the user’s heart rate is declining,
and is below the target heart rate. Therefore, at time point t1, the song is switched to s2, which
is a song that is known to raise users’ heart rates. As can be seen between time points t1 and t2,
the user’s heart rate rises. However, since it starts to overshoot the target, at time point t2, the
song is switched again in order to bring the heart rate back down. Once the heart rate is stable,
at time point t3, the track is once again switched to one which keeps the heart rate stable. This
process can then be seen to happen again in reverse order,

3.6 User Interface
In order to create a working system for users to test, a user interface needed to be created. The
main features needed were initial setup, viewing recommendations, providing feedback on recom-
mendations, viewing and adjusting workout targets and viewing and downloading playlists.
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The interface was built as a web application, hosted at https://osti.uk, using a React frame-
work called Next.js [33].

3.6.1 Initial Setup

Since this application runs using real user data, the first key use for a user interface is for connecting
the Last.FM, Google Fit and Spotify APIs. To link these together for each user, and overall user
account is required, which is managed by a single Google login by the user. Once an account is
created, the /profile page hosts the ability to authorise access to their LastFM and Google Fit
accounts, giving appropriate permissions for each. Once this is completed, they are then prompted
to trigger the start of the data collection pipeline detailed in section 3.2.

3.6.2 Recommendations and User Feedback

The second use of the web interface is the ability for a user to view which songs will be recom-
mended to them for each potential workout. This is a visualisation of the results of the Music
Recommendation Engine described in Section 3.3. For a logged in user, they can navigate to the
/recommendations page, which lists all of the workouts which they have recommendations for.

From here, they can select a workout and be taken to a more in-depth page which contains the
ability to customise the targets for this workout type (Section 3.6.3), playlists generated for this
workout type (Section 3.6.4), the top 200 recommended songs for this workout type and up to the
top 100 most listened to songs by them for this workout type.

The two lists of tracks on this page allow the user to see both which tracks the Music Recom-
mendation Engine thinks they would most like listening to in the context of this workout type,
along with what historically they’ve listened to the most during this workout type. They display
basic track information, such as name, artist and cover artwork, as well as a ‘boost’ drop-down,
which allows the user to give feedback to the track in this context as detailed in Section 3.3.5.
Once a user updates the boost value, this is instantly stored in the database, and then when the
Music Recommendation System is next run, this boost value will be taken into account, so the
track in the corresponding context will either be moved up or down the ranking. An example of
this page for a running workout can be seen below in Figure 3.9.

Figure 3.9: An example of the Recommendation page on the Osti web interface for a running
workout
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3.6.3 User Workout Targets

Also on each individual workout recommendation page is the interface which allows a user to view
and alter the targets for each of the workout metrics, such as average heart rate and total calories
burned. The boxes are populated with the default values, so that a user can see what their ‘average
workout’ looks like, and once they update and save these values, any further playlists which are
generated will use these as baseline targets. The ability to reset these to the default values is also
available, since a user may accidentally update these. This can be seen in Figure 3.10.

Figure 3.10: An example of the User Workout Targets for a running workout on the Recommen-
dations page of the Osti web interface

3.6.4 Generated Playlists

The final section of the workout recommendation pages are the generated playlists. As described
in Section 3.4.6, the 10 most recent unique playlists which have been generated are stored for each
user-workout pair, and are displayed to the user. They’re displayed along with their length in
minutes, the number of songs they contain, when they were generated, and a preview of the tracks.
This can be seen in Figure 3.11 They also have a link to a playlist-specific page.

On the playlist pages, the user has the option to save the playlist to their Spotify library, and
if it’s already saved, to open it up directly in the application. This allows quick access to start
playing the playlist at the beginning of a workout. The full tracklist, along with track info such as
artist and track tempo can also be seen on this page, as seen in Figure 3.12.

Figure 3.11: An example of the most recently generated playlists for a running workout on the
Recommendations page of the Osti web interface

3.6.5 Missing Songs

The next page, located at /missing, is where any tracks which the fetcher has not been able to
find on Spotify are collected. Since there is not a one-to-one link between Last.FM scrobbles and
Spotify tracks, it relies on the search endpoint of the Spotify API, as detailed in Section 3.2.2, and
therefore for tracks which cannot be found with this endpoint, features cannot be retrieved, and
so they cannot be recommended.

Therefore to combat this issue, the page lists tracks which the user has listened to that have
not been located on Spotify, ordered by how many times they have listened to them. It then has
a text box, where the Spotify URL, which can be easily obtained from the Spotify application,
can be pasted in. This will then link the track in Osti’s database to the correct track on Spotify,
and complete the feature collection for this song. From then on, this song will be available in
recommendations to all users. It is rare that a user will need to do this often, however if the
unfortunate circumstance happened where a song that a user listened to regularly cannot be
located, this gives them the ability to incorporate it into the system. This page can be seen in
Figure 3.13.
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Figure 3.12: An example of the page which displays the tracks in a playlist, and allows the user to
download it to Spotify and then open the playlist, on the Osti web interface

Figure 3.13: An example of the missing songs page on the Osti web interface
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Chapter 4

Evaluation

This chapter evaluates how well the project has met the objectives set out in Section 1.2, using
both data visualisation (see Section 4.1) and user testing (see Section 4.2).

4.1 Data Visualisation

Since recommendations are subjective, it’s hard to quantify a metric to score how accurate they
are without asking the listened for their opinion (as is done in Section 4.2.1). Therefore, a useful
way to see how the Music Recommendation Engine functions is by visualising the data.

4.1.1 Feature Analysis

The first method of doing this is to analyse some of the features of tracks described in Table 3.1
for different workout types, for both listens recorded from users, as well as the recommendations
given by the system.

Figure 4.1 shows how the average track energy vs average calories burned per minute varies
across workout types, both for tracks users have listened to (left) and the recommendations given
(right). Both of these graphs have a positive correlation, implying that there is a correlation be-
tween listening to higher energy tracks and burning more calories, as would be expected. The
music recommendation engine has also followed this trend when recommending tracks, showing
that the recommendations are suitable based on this track feature. We can see that in both cases,
a calming activity such as Mindfulness burns a lot less calories, and is associated with tracks of
much lower energy, and the opposite is shown for the higher energy activities such as Cycling.

However, one difference between the recorded tracks and recommendations is the range of track
energy values. For the recorded tracks, the energy is pretty similar for all workout types, however
is significantly lower in the Mindfulness context. The average track energy for Mindfuless recom-
mendations is still lower, however is much closer to the other activity types than in the recorded
tracks. This implies that the change in track energy between workout types is not as significant in
the recommendations. One explanation may be that the recommendations used here were only for
one user, since only one user had completed a workout of this type, whereas the recorded tracks
use the dataset described in Section 3.3.3, and therefore has recorded tracks from 10 different users.

Figure 4.2 shows how average track acousticness vs average calories burned per minute varies
across workout types, again for recorded tracks and recommended tracks. We can see the corre-
lation here is negative, implying that the more calories that are burned on average per minute,
the less acoustic a track will be. This aligns with expectations, since acousticness is negatively
correlated to energy [34].

Figure 4.3 shows a strong positive correlation between danceability and calories burned per
minute in the recommended tracks. This correlation is less strong for the recorded tracks, how-
ever a positive correlation can still be seen. One interesting point is the workout type of Dancing
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Figure 4.1: Average Track Energy vs Average Calories Burned per Minute
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Figure 4.2: Average Track Acousticness vs Average Calories Burned per Minute

records the highest danceability score in the recorded tracks, as is expected, however only the 5th
highest danceability score in the recommended tracks. This may be due to the limited number of
tracks used for recommendations, at 200 tracks for this graph due to the small number of users
who have completed this type of workout, whereas 26,029 tracks were recorded for this workout
track using the data from the earlier described Spotify Million Playlist Dataset. Therefore, this
may change as more users enter the system. It’s also been shows danceability and energy do not
directly correlate [34], and therefore this shows this relationship has been observed and learned by
the music recommendation engine independently of the energy feature.

Figure 4.4 shows a similar trend with loudness. It’s been shown that loudness and energy are
highly correlated [34], and, when also looking at Figure 4.1, we can see this trend continue in
both the observed values as well as our recommendations. Figures 4.1a and 4.4a reinforce this
strong correlation, since the different workout types have similar placement on both graphs. The
recommendation graphs (Figures 4.1b and 4.4b) also show a positive correlation, albeit weaker.
However, this may be due to the limited nubmer of users in the system.

The final feature considered is instrumentalness, in Figure 4.5. As can be clearly seen in the
graphs, the correlation between instrumentalness of tracks and calories burned is not the same for
observed tracks and recommended tracks. Figure 4.5a is more expected, since the workouts which
burn more calories are less instrumental, and therefore have more lyrics. Tracks with lyrics have
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Figure 4.3: Average Track Danceability vs Average Calories Burned per Minute
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Figure 4.4: Average Track Loudness vs Average Calories Burned per Minute

been shown to be more motivational for exercise than tracks without [35], and so this follows the
trend shown in our observations. However, this trend is not replicated in out recommendations.
One key outlier is the mindfulness activity type. As we can see from Figure 4.2b, Osti recommends
more acoustic songs for mindfulness playlists than instrumental songs. This may be a user prefer-
ence, since we know users have different preferences for different contexts [16], and therefore with
more users this could be investigated further.

4.1.2 Known vs Unknown Recommended Tracks

The next data we wanted to visualise was the percentage of recommended tracks which were known
to a user. The ability to recommend tracks a user hasn’t listened to before is a key advantage of
the Osti system, allowing it to generate recommendations based on minimal data using a hybrid
approach of Collaborative Filtering and Content-Based recommendations. This means recommen-
dations can be generated from any number of tracks, and will become more accurate over time
as the number of tracks listened to in a particular context increases, giving a clearer image of the
user’s music taste for this particular context.

To visualise the amount of tracks being recommended to the user that are known, for each user-
workout pair Osti has generated recommendations for, we plotted the number of tracks listened
to by a user in that particular context against the percentage of tracks which are known to them
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Figure 4.5: Average Track Instrumentalness vs Average Calories Burned per Minute

in that context. This can be seen in Figure 4.6. As was expected, as the number of tracks a user
has listened to in a particular context increases, so does the percentage of recommended tracks
which are known in that context. This implies that the recommendations the system generates for
the user-workout pair align with the user’s music taste for this workout. However, the graph also
shows that for the data we currently have, the majority of user-workout pairs have a fairly low
total number of tracks listened to in that context - all but 2 of these pairs are below 100 tracks.
Therefore, a longer study would be needed to confirm this trend in the long term.

All but one sets of recommendations are below 30% known songs, which shows that the music
recommendation engine does not just suggest the top tracks for a user, and is using the methods of
collaborative filtering and content-based recommendations to show tracks which are more ideal for
the context. The appropriateness of these recommendations is explored further with user testing
in Section 4.2.
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Figure 4.6: Number of known tracks in a given context relative to how many tracks a user has
listened to in that context

4.2 User Testing
Since this is a user-facing application, user testing was an integral method of evaluating success.
This application has two main methods of recommendation: playlists and real-time recommenda-
tions, which will both be evaluated.
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4.2.1 Playlist Generation

One key metric for measuring the appropriateness of generated playlists is to compare these playlists
against other combinations of songs from different sources. In this case, we will use four playlists
per user-workout combination:

• Osti-Generated Playlist

• Spotify’s Soundtrack Your Workout Playlist [23]

• User Hand-Curated Playlist

• Generic Workout Playlist (e.g. ‘Fun Run’ from Spotify [36])

These playlists were all be made to be the same length, and anonymised so the user is not
biased towards one. 3 users participated in this study, who all came from varied backgrounds
to ensure that the results are representative of an actual population. They are varied based on
gender, age, ethnicity, fitness level and music taste.

We measured how close the user’s heart rate, calories burned, distance covered, average speed
and steps taken were to the targets which were set for the workout using standardised cosine sim-
ilarity and standardised Euclidean distance. Standardisation is where you subtract the mean of
each recorded vital from each, and then divide by the equivalent standard deviation, such that
one vital does not influence the similarity more than another. Despite cosine distance not taking
magnitude as a factor, it makes it easier to see the difference between the different values.

We did this for three workout types: running, walking and strength training. (For strength
training, we only consider heart rate and calories burned, since this does not involve moving over
a distance). The full results of these tests can be seen in Appendix B, however an overview of the
results is discussed here.

4.2.1.1 Running

The first workout we look at is a Running workout. As can be seen in Table 4.1 and Table 4.2,
the Osti playlist had the largest cosine simiarity and smallest Euclidian distance from the target
values, and therefore kept the user closest to target. The generic running playlist also had similar
success in keeping the user close to target.

Figure 4.7 shows how the user’s speed changed over time, marked with when a each track
started playing (other vitals, as well as a list of tracks played in each workout can be found in
Appendix B). As we can see, with the Osti playlist and Generic playlist, there is a clear change in
speed when the song changes, however moreso with the Osti playlist. This implies that the tracks
encourage the user to run at a specific speed. However, since Osti knows this target speed (in this
case 2.2m/s), it can find songs which will keep a user around this average. It can be seen that it has
done this by alternating between tracks which encourage the user to run at higher and lower speeds.

Playlist Type
Standardised

Cosine
Similarity

Standardised
Euclidian
Distance

Osti-Generated Playlist 0.6877171843 1.011975091
Spotify’s Soundtrack Your Workout Playlist
[23] -0.39378341 2.42696652

User Hand-Curated Playlist -0.03869123708 1.374357225
Generic Workout Playlist (‘Fun Run’ from
Spotify [36]) 0.3005029216 1.068987713

Table 4.1: Standardised cosine distance between target running vitals and observed running vitals
for different playlist types
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Spotify’s Soundtrack Your Workout’s playlist can be seen to encourage a user to run at a faster
speed for the first 3 tracks. However, by the fourth track they were probably tired, and this caused
their speed to drop significantly. Track 5 was also not known to the user, and therefore didn’t have
the impact to increase their speed again, causing under-performance which can be seen in Table
4.2.

Playlist Type
Dura-
tion

(mins)

Average
Heart
Rate
(bpm)

Calories
Burned
(kcal)

Dis-
tance

Covered
(m)

Average
Speed
(m/s)

Steps
Taken

Target 20 150 230 2700 2.20 2700
Osti-Generated
Playlist 21.1 149.9 229.7 2713.7 2.17 2826

Spotify’s
Soundtrack
Your Workout
Playlist [23]

20.3 146.6 188.0 2357.2 2.08 2521

User
Hand-Curated
Playlist

20.5 163.3 238.4 2686.3 2.28 2758

Generic
Workout
Playlist (“Fun
Run” from
Spotify [36])

21.2 155.9 238.3 2655.7 2.23 2651

Table 4.2: Comparison of user running vitals for different playlist types
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Figure 4.7: Time vs Speed for a Running Workout
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4.2.1.2 Walking

The next workout type to be tested was a walking workout. This has a lower intensity than the
running workout, and therefore we wanted to see whether this made it easier to more difficult to
encourage the user to reach their target vitals with music.

As can be seen in Table 4.3, the Osti Playlist again had the highest cosine similarity and lowest
Euclidean distance. However, in this case the User-Curated playlist also had a very high cosine
similarity and low Euclidean distance, implying that it also kept the user very close to their target
vitals.

Figure 4.8 shows how a user’s heart rate changed over time, along with when certain tracks were
played (other vitals, as well as a list of tracks played in each workout can be found in Appendix B).
This figure shows that the Osti playlist caused a much smoother change in heart rate over time,
whereas other playlists, such as Spotify’s Sountrack Your Workout playlist, caused the heart rate
to fluctuate a lot more.

We can also see that the Generic playlist workout, which had an average heart rate of 109.0
bpm, never even caused the user to reach the target heart rate of 120 bpm. Since this playlist
consisted of only one track out of seven which was known to the user, it implies that the user was
less motivated to walk at a faster pace, thus increasing their heart rate, since they didn’t know the
music playing. This is also reflected in the lower average speed of 1.37 m/s.

Playlist Type
Standardised

Cosine
Similarity

Standardised
Euclidian
Distance

Osti-Generated Playlist 0.819692162 2.069791088
Spotify’s Soundtrack Your Workout Playlist
[23] -0.464170922 3.464220045

User Hand-Curated Playlist 0.6491089589 2.429297181
Generic Workout Playlist (‘Walking Music’
from Spotify [37]) -0.3155987036 3.524149311

Table 4.3: Standardised cosine distance between target walking vitals and observed running vitals
for different playlist types

Playlist Type
Dura-
tion

(mins)

Average
Heart
Rate
(bpm)

Calories
Burned
(kcal)

Dis-
tance

Covered
(m)

Average
Speed
(m/s)

Steps
Taken

Target 30 120 111 2500 1.44 3000
Osti-Generated
Playlist 29.9 119.2 119.0 2521.8 1.41 3235

Spotify’s
Soundtrack
Your Workout
Playlist [23]

31.5 122.4 140.1 2608.3 1.41 3370

User
Hand-Curated
Playlist

30.0 119.7 129.2 2532.6 1.42 2988

Generic
Workout
Playlist
(‘Walking
Music’ from
Spotify [37])

30.1 109.0 119.0 2460.4 1.37 3376

Table 4.4: Comparison of user walking vitals for different playlist types
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Figure 4.8: Time vs Heart Rate for a Walking Workout

4.2.1.3 Strength Training

The final workout type tested was a strength training workout. This is different from the previous
two tests since it does not involve moving over a distance, and therefore the only metrics which
could be collected are heart rate and calories burned.

Table 4.5 shows that the user-curated playlist performed the best according to cosine distance,
and the Osti playlists performed the best according to Euclidean distance.

However, Figure 4.9 shows that there is not much of a correlation between heart rate and
when a track changes for any playlist type. This is probably because of the different nature of this
workout type: a user will usually do sets of weight lifting to train strength, and therefore it’s harder
to visualise the effect of the tracks as physical exertion is not constant, as it is with running and
walking workouts. This implies that it’s harder to align music with exact vital changes, however
the results shown in Table 4.5 show that, probably using the vital of calories burned, since it’s
cumulative over time, Osti has managed to predict a playlist which kept the user close to target.
The user’s hand curated playlist also managed to do this.

Playlist Type
Standardised

Cosine
Similarity

Standardised
Euclidian
Distance

Osti-Generated Playlist 0.7943001801 1.466018665
Spotify’s Soundtrack Your Workout Playlist
[23] -0.5096565764 3.551569157

User Hand-Curated Playlist 0.8560799298 2.233827903
Generic Workout Playlist (‘Workout’ from
Spotify [38]) -0.6341866047 2.913684112

Table 4.5: Standardised cosine distance between target strength training vitals and observed run-
ning vitals for different playlist types
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Playlist Type Duration
(mins)

Average
Heart Rate

(bpm)

Calories
Burned (kcal)

Target 30 115 170
Osti-Generated Playlist 31.0 112.4 183.5
Spotify’s Soundtrack Your
Workout Playlist [23] 31.0 106.4 155.4

User Hand-Curated Playlist 31.8 109.3 171.9
Generic Workout Playlist
(‘Workout’ from Spotify [38]) 31.8 107.9 181.3

Table 4.6: Comparison of user strength training vitals for different playlist types
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Figure 4.9: Time vs Heart Rate for a Strength Training Workout

4.2.1.4 Overview

As we can see in Figure 4.10, Osti has the standardised cosine similarity closest to 1 for all work-
out types. This shows that it was the playlist which generated recommendations which helped
the user reach their target values the closest. The user-generated playlists also had a very high or
higher cosine similarity. This makes sense, since these playlists have been created by the user to
help them obtain target workout performance, and therefore are likely to have the desired effect,
since the user knows their music preferences better than an algorithm can. The outlier here is the
user-generated running playlist. This caused the user to over-exert themselves and be above tar-
get. This may be viewed as successful, however the target of this experiment was to keep the user
as close as possible to their targets, since this prevents over-exertion. It’s possible that the user
didn’t curate this playlist correctly, and therefore further testing could be done to verify this result.

Figure 4.11 shows the Euclidean distances, grouped by workout type. We can see that the
average Euclidean distance was lower for the running workout type, implying that the playlists all
kept the user closer to their target values. The Osti playlists had the smallest Euclidean distance
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Figure 4.10: Standardised Cosine Similarity by Workout and Playlist Type
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Figure 4.11: Standardised Euclidean Distance by Workout and Playlist Type

for each workout type, implying that it kept the user closest to target for all workout types.
However, as discussed above, it’s harder to justify this for workouts without constant exertion,
such as strength training, since these vitals fluctuate regularly due to factors external to the user’s
exertion.

Figure 4.12: Photos of users completing user tests
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4.2.2 Real-time Recommendations

For real time recommendations, we decided to similarly test how close the user’s heart rate, dis-
tance travelled and calories burned were to the target, and whether the changing of songs in real
time actually had an impact on these metrics. We did this on two workout types: running and
strength training, since these vary in intensity.

A list of which tracks were listened to for each workout, along with the vital graphs for each
workout, can be found in Appendix C.

4.2.2.1 Running

The first workout type we considered was a running workout. This was completed by the same
user who completed the running workouts in the previous section. Since running usually has a
more stable exertion, where vitals don’t fluctuate quickly, we wanted to see how often the Osti
algorithm had to skip songs. Figure 4.13 shows user vitals over the course of the workout. The
red vertical lines represent a track being played naturally (either initially or after the previous one
finished playing. Yellow vertical lines represent a track being played due to the previous one being
skipped. The green horizontal line shows the target for that vital throughout the workout.

As we can see from Figure 4.13a, the changes in track usually occur when the user’s heart rate
is at a maximum or minimum, suggesting that the change in track results in a change in direction
of heart rate. Similar patterns can be seen with speed and distance travelled, suggesting that
the user speeds up or slows down in order to go towards the target viral. This suggests that the
suggestions were appropriate in helping the user stay on track.

We can see from Figure 4.13 that 5 out of the 10 tracks played were eventually skipped, in order
to replace them with a more appropriate track, amounting in a 50% skip rate. After speaking to
the user, they said “The points at which tracks skipped aligned with when I was over- or under-
exerting myself, and were not too frequent to become annoying”. This, along with the results from
Figure 4.13 suggest that tracks were only skipped when a user was staying above or below target
for an extended period of time (in this case 30 seconds), and therefore was used to adjust their vitals.

We can also see from Table 4.7 that the user’s vitals were extremely close to the targets given
to the Osti realtime application. If we compute the standardised cosine similarity and Euclidiean
distance of these from the targets in the same way as in Section 4.2.1.1 then we obtain a cosine
similarity of 0.878 and a Euclidian distance of 0.950. The cosine similarity and Euclidian distance
of the Osti-generated playlist were 0.688 and 1.011 respectively, which shows that for this workout
type, the real-time adjustments helped keep the user closer to their target vital values.

Dura-
tion

(mins)

Average
Heart
Rate
(bpm)

Calories
Burned
(kcal)

Dis-
tance

Covered
(m)

Average
Speed
(m/s)

Steps
Taken

Target 20 150 242.2 2700 2.2 2700
Playlist
Results 21.1 149.9 229.7 2713.7 2.17 2826

Real-time
Results 20.2 152.5 230.0 2702.2 2.20 2743

Table 4.7: Running vitals for Osti playlist and real-time recommendations
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Figure 4.13: User Vitals for a Running workout using real-time Osti recommendations

4.2.2.2 Strength Training

The second workout type we considered was strength training, which is lower intensity that run-
ning. It also doesn’t involve constant exertion, since users usually train in sets, and therefore we
wanted to see how this affected the Osti recommendation algorithm.

Figure 4.14 shows a plot of a user’s heart rate and calories burned over time. The red, yel-
low and green lines represent the same as for the running graphs. Figure 4.14b, which shows
the calories burned over time, isn’t very useful, since it suggests the calories were burned at a
constant rate. This is still useful in the algorithm, since this can be used to predict how close
the user will be to the target number of calories, however is not useful for visualisation and analy-
sis. Therefore, we will focus on Figure 4.14a, since heart rate varies a lot more drastically over time.

Figure 4.14a shows that only on 5 occasions was a track played the full way through. This
equates to 75% of tracks eventually being skipped. This is much higher than in the running work-
out at only 50%, since the user is not showing constant exertion. As we can see, the heart rate
fluctuates a lot more than for the running workout, since the user is completing the workout in
sets, and therefore their heart rate will raise during this set, and then fall before the next one.
This resulted in tracks changing frequently, since the user would stay above target for around 30
seconds (the length of time before a track skips if it is not ideal), causing the track to skip. The
same situation would then repeat once they are resting in between sets. This resulted in track
being skipped much more frequently in real time, resulting in 20 tracks being played, compared to
only 9 in the playlisted workout. The user who completed this workout gave feedback that “The
constant changing of tracks sometimes took me out of the zone and interrupted my workout”, also
suggesting that the tracks were changed too frequently.

Table 4.8 shows that the average heart rate during this workout was 107.3bpm, and the total
number of calories burned was 164.2. As we can see, the real-time recommendations ended up with
the number of calories burned much closer to the target, however it did result in a lower heart rate,
which was 7.7bpm below target, vs only 2.6bpm below target during the playlist generated workout.
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The fluctuations in heart rate discussed earlier due to the workout not having constant exertion
are a likely cause for this, since the user explained that the frequent track skipping distracted them
from the workout. This also means that it is less likely that the tracks were having the desired
effect in raising and lowering the heart rate, and probably were more likely only influencing the
maximum heart rates being reached. The standardised cosine similarity and Euclidian distance
for the real-time workout were -0.618 and 3.045 respectively, which also suggest that the real-time
recommendations did not keep the user as close to their target vitals as the playlist, which had
values of 0.794 and 1.466.

Duration
(mins)

Average
Heart Rate

(bpm)

Calories
Burned
(kcal)

Target 30 115 170
Playlist Results 31.0 112.4 183.5
Real-time Results 30.1 107.3 164.2

Table 4.8: Strength Training vitals for Osti playlist and real-time recommendations
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Figure 4.14: User Vitals for a Strength Training workout using real-time Osti recommendations

4.2.2.3 Overview

After comparing the real-time recommendation results for both a running and strength training
workout, it is clear that the algorithm worked much better for the running workout, since it had
a higher cosine similarity than all of the playlists, and a lower Euclidean distance. One predicted
reason for this is because running workouts have a constant exertion. This allowed songs to be
played for much longer, and actually have the desired effect on the user, as can be seen in Figure
4.13.

We conclude that real-time recommendations are not as suitable for workouts such as strength
training, which are completed in sets, where vitals such as heart rate increase and decrease reg-
ularly independent of music. Further research could be done for methods which change tracks
less frequently for workouts of non-constant exertion, or by not skipping tracks and instead just
calculating the next song in real-time.
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Chapter 5

Ethical Considerations

5.1 Human Participation
One key ethical consideration for the implementation of this project was the use of human partici-
pants, especially for the user testing of the application. Since this is a user-focused application, it’s
designed as an aid to help improve a user’s workout performance by providing assistance through
music. Therefore, for the evaluation, we tracked user vitals, such as heart rate, during workouts,
to assess whether the suggested music helped to improve their performance. This was essential to
evaluating the outcome of the project.

5.2 Data Protection
The project requires collecting personal data from users. The first kind of data collected is listening
history; the songs a user has listened to and when they listened to them. This relies on two APIs:
Last.FM and Spotify. The second kind of data collected is workout data, which is collected using
the Google Fit API, as well as in real-time using the WatchOS application.

This data is also processed in order to find patterns which allow the recommendation engine to
generate accurate song suggestions. This is needed for the application to fulfil its core functionality
as a music recommendation service. Therefore, it must abide by the Data Protection Act, by being
transparent with the user as to what data is being stored, why it is needed, and making sure to
get their consent. This is done when the APIs are connected, since the users give permissions for
Osti to access the APIs and collect appropriate data.

Sensitive data is also going to be collected, since health data is going to be used to assist in
workout-specific recommendations. This therefore means that data needs to be stored securely,
and users have the ability to have their data removed from the system upon request.

The application could also be classed as tracking users, since it will build a record of their music
listening history, and will have access to workout data, so it can be seen what activities a user was
doing at a particular time.

The music recommendation engine uses both use a combination of user history, as well as pub-
licly available data sets, which allows it to generate recommendations which are more appropriate
for a given workout. The publicly available data sets, such as the Spotify Million Playlist Dataset
[29], is used for collaborative filtering, and will not be combined with user data in order to find
users in these data sets.

54



Chapter 6

Discussion, Future Work and
Conclusion

6.1 Discussion

As discussed in Section 4.2.1, Osti is successful in creating playlists which help a user to achieve
their target vitals over the course of a workout. Compared to Spotify’s Sountrack Your Workout
playlists and generic workout playlists, Osti did a better job at helping a user reach their desired
vitals by the end of a workout, and not under- or over-shoot them. User-curated workout playlists
were the only playlist type which had similar results to Osti, since they’ve been curated by the user
for the exact workout type, however in higher-intensity workouts Osti even outperformed these.
This is because it can use collected data to detect the effect of tracks on workout performance.

Furthermore, we also reported how the real-time application of Osti’s algorithm, as tested in
Section 4.2.2, helped constant exertion workouts, such as running, to keep user vitals steady and on
target. However, we also learned that in it’s current state, the real-time algorithm is not as useful
for workouts such as strength training, where user vitals fluctuate more drastically and repetitively
over time, due to the workout generally happening in sets, where vitals peak and drop repeatedly.
Further investigation is needed into techniques which could help to adapt Osti playlists to real-time
for these types of workouts.

We also showed in Section 4.1 that Osti successfully managed to generate recommendations
which had similar musical features to those which had been observed in each workout context. This
is done using real data obtained from real test users, showing that the algorithms used by Osti are
applicable in the real world, with data from a variety of sources. These visualisation results also
showed that a hybrid approach of collaborative filtering and content-based recommendations can
produce accurate recommendations that are later used in workout contexts.

Osti was also used to evaluate it’s methods on non-workout contexts, such as studying, evaluated
under the workout type ‘mindfulness’. The musical features of the recommendations produced for
this workout type aligned with what was expected, based on intensity of workout. This shows
that the general approach of recommending tracks using user vitals works in contexts which have
a lower intensity, and therefore the algorithm could be extended to contexts outside of workouts.
For the workout-based collaborative filtering to still be usable, the current user context would still
need to be obtained. Some other works, such as the system designed at the National University
of Singapore [14], has had success with activity detection based on user vitals, and therefore Osti
could be extended to incorporate this to allow for recommendations for a wider range of contexts.

6.2 Future Work

There are many different ways that Osti could be extended in the future to enable more advanced
recommendations. These include being able to customise workout targets over time (Section 6.2.1),
more research into real-time recommendations for workouts such as strength training (Section
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6.2.2) integrating a temporal context into recommendations (Section 6.2.3), and understanding
the subject of a track (Section 6.2.4).

6.2.1 Customisable Workout Target Vectors
Osti currently uses a set of up to five target vitals per user-workout pair to track workout perfor-
mance: calories burned, average heart rate, distance, average speed and steps taken. The workout
duration can also be set. However, these vitals are all constant values over the duration of the
workout, which may not reflect how a user wants to set their targets.

Therefore, a useful extension would be to adapt the targets so that they do not need to be
constant over time, and could be edited by the user for different workout styles. For example, a
user may want to do a run where they sprint for 2 minutes, then run for 2 minutes, then walk for
2 minutes, and would like their targets and the tracks played to reflect this. Osti was built with
extensibility in mind, and therefore already treats user workout targets as an array, where each
value is the target over 10 seconds of the workout, as described in Section 3.4.1. This therefore
would make it simple to extend to customisable workout target vectors.

6.2.2 Further Research into Real-Time Recommendations for Non-Constant
Exertion Workouts

As mentioned in Section 4.2.2, the real-time Osti recommendation application works well for work-
outs where exertion is more constant, such as running. However, for workouts such as strength
training, where users’ heart rate and other vitals fluctuate due to completing exercise in sets, Osti
often skips songs too frequently.

Further research could be done into methods which would allow for a more useful recommenda-
tion algorithm for this workout type. One option would be not not skip songs, and just calculate
the next song based on current workout trends, and therefore the skipping of multiple songs in
quick succession would not be a problem. Alternatively, the parameters determining how long
a user has to be out of target range before a track is skipped could be learned by the system
depending on workout type.

6.2.3 Temporal Recommendations
Currently, Osti takes in as much listening history as possible from a user’s Last.FM account, in
order to have the maximum amount of data to work with. However, this means that if this listen-
ing history is very extensive, potentially going back multiple years, then more recently discovered
songs may be outweighed by older songs which have been played more.

Therefore, introducing a temporal aspect to the music recommendation engine would allow for
a user’s current music taste to be isolated and used in recommendations, since music taste can
evolve over time [34]. It would also allow for playlists to be created based on listening history at a
specific point in time, opening up the possibility of ‘throwback’ playlists. Success has been shown
by Dias and Fonseca in using temporal context in collaborative filtering algorithms [39], and also
neural methods have been researched by Lin et al. that have been shown to improve short-term
recommendations (akin to the real-time implementation of Osti) using RNNs [40].

6.2.4 Lyric Comprehension & Music Tagging
Osti uses many features of tracks, such as tempo, artist and learned features like danceability and
acousticness when recommending tracks. It also uses popularity metrics, as well as collaborative
filtering to take advantage of other user’s patterns. Another interesting way of categorising tracks
would be to understand the subject of the track lyrics.

There are two potential methods of doing this. The first would be using some Natural Language
Processing on the lyrics of a track to understand what the track is about. The other would be to
use an API which gives user-annotated tags for the genre and theme of tracks, such as Last.FM.
The advantage of using NLP would be that it could be applied to any track for which lyrics can be
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retrieved, however it would then depend on how accurate the NLP model is at tagging the track.
User-annotated tags would be more accurate, however would require a massive data source which
is kept up to date, since Osti is designed to work with all tracks available on streaming services.

6.3 Conclusion
We’ve created an end-to-end system, Osti, which takes real user workout and listening data, col-
lected automatically and in real-time, and uses this to compute recommendations for each workout
type a user has completed before. From these recommendations, it generates both playlists of ideal
tracks based on workout history, as well as adapts these ideal tracks in real-time based on current
user vitals.

Using a hybrid approach of collaborative filtering and content-based recommendations, Osti
avoids the cold start problem for initial users in the system, and can recommend full workout
playlists from as little as one track of prior knowledge in a workout context. These recommenda-
tions can also be visualised by users through a web application, as well as manually adapted if a
user disagrees with them.

The use of historical workout and listening data allows a workout profile to be built, and from
this the effect of tracks on a user’s workout performance can be learned. Combining these learnings
with musical features, and using the profile of a users workout, along with their target vital values,
a playlist of ideal songs can be curated to keep a user close to these values.

This algorithm was also adapted to work in real-time, in the form of an Apple Watch appli-
cation. Using user vitals, such as heart rate, collected from the watch, the application calculates
the most ideal track on device, and then uses Spotify’s API to control the music playing in sync
to the workout, by skipping tracks and reshuffling the queue to help the user close in on their targets.

Osti was evaluated using a combination of data visualisation and user testing. We showed that
the features of the tracks being recommended aligned with those observed in the same workout
context, and also followed expected patterns based on workout intensity. Through user testing, we
showed that Osti-generated playlists outperformed other workout playlists for the workout types
we tested, helping users keep close to their target vital values. They even performed equally as
good as of slightly better than user-curated playlists. Real-time recommendations further improved
how close user vitals were to target for constant-exertion workouts such as running.
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Appendix A

Database Schema






























 workoutsworkouts 

_id        objectId NN

workout_type_id        objectId NN

user_id        objectId NN

start_time       date NN

end_time       date NN

calories_burned       double NN

active_minutes        double NN

steps       int NN

distance       double NN

speed  { }    workouts.speed NN

avg       double NN

max       double NN

min       double NN

data [{ } ]   workouts.data NN

start_time       string NN

end_time       string NN

calories_burned       double NN

distance       double NN

speed       double NN

steps       double NN
active        double NN

heart_rate        double NN

heart_rate  { }    workouts.heart_rate NN

avg       double NN

max       double NN

min       double NN

 workout_typesworkout_types 

_id        objectId NN

name       string NN

duplicates [  ]   string NN

 recommendationsrecommendations 

_id        objectId NN

user_id        objectId NN

updated_at        date NN

v1 [{ } ]   recommendations.Workout NN

track_id        string NN

score       double NN

v2 [{ } ]   recommendations.Workout NN

track_id        string NN

score       double NN

v3 [{ } ]   recommendations.Workout NN

track_id        string NN

score       double NN

v4 [{ } ]   recommendations.Workout NN

track_id        string NN

score       double NN

v5 [{ } ]   recommendations.Workout NN

track_id        string NN

score       double NN

 playlistsplaylists 

_id        objectId NN

workout_id        objectId NN

tracks [  ]   objectId NN

length       double NN

created_at        date NN

spotify_playlist  { }    playlists.spotify_playlist NN

id        string NN

url        string NN

name       string NN

 trackstracks 

_id        objectId NN

name       string NN

artists [{ } ]   tracks.artists NN

name       string NN

id        string NN

album  { }    tracks.album NN
id        string NN

name       string NN

release_date        date NN

image_url        string NN

lastfm_url        string NN

spotify  { }    tracks.spotify NN

uri        string NN

preview       string

id        string NN

features  { }    tracks.features NN

duration       double NN

danceability        double NN

energy        double NN

key       double NN

loudness        double NN

mode       double NN

speechiness        double NN

acousticness        double NN

instrumentalness        double NN

liveness        double NN

valence       double NN

tempo       double NN

time_signature       double NN

created_at        date NN

 sessionssessions 

_id        objectId NN

userId        objectId NN

expires        date NN

sessionToken       string NN

accessToken       string NN

created_at        date NN

updated_at        date NN

 cf_playlistscf_playlists 

_id        objectId NN

workout_type_id        objectId NN

tracks [  ]   objectId NN

 boostsboosts 

_id        objectId NN

track_id        objectId NN

workout_type_id        objectId

user_id        objectId NN

value       int NN

 usersusers 

_id        objectId NN

name       string NN

email        string NN

image_url        string NN

created_at        date NN

updated_at        date NN

lastfm_key       string NN

lastfm_username       string NN

status        string NN

google_tokens  { }    users.google_tokens NN

access_token       string NN

refresh_token       string NN

scope       string NN

token_type       string NN

expiry_date        double NN

spotify_tokens  { }    users.spotify_tokens NN

access_token       string NN

token_type       string NN

expires_in        double NN

refresh_token       string NN

 listenslistens 

_id        objectId NN

track_id        objectId NN

user_id        string NN

time       string NN

 user_workout_statsuser_workout_stats 

_id        objectId NN

user_id        objectId NN

workout_type_id        objectId NN

default        bool NN

stats  { }    user_workout_stats.stats NN

average_length       double NN

average_active        double NN

average_distance       double NN

average_speed       double NN

average_speed_max       double NN

average_speed_min       double NN

average_steps       double NN

average_calories        double NN

average_heart_rate        double NN
average_heart_rate_max       double NN

average_heart_rate_min       double NN

active_percentage       double NN

updated_at        date NN

 workout_deltasworkout_deltas 

_id        objectId NN

track_id        objectId NN

workout_id        objectId NN

time       int NN

heart_rate  { }    workout_deltas.heart_rate NN

avg       double NN

min       double NN
max       double NN

delta        double NN

calories  { }    workout_deltas.calories NN

sum       double NN

avg       double NN

min       double NN

max       double NN

delta        double NN

steps  { }    workout_deltas.steps NN

sum       double NN

avg       double NN

min       double NN

max       double NN

delta        double NN

distance  { }    workout_deltas.distance NN

sum       double NN

avg       double NN

min       double NN

max       double NN

delta        double NN

speed  { }    workout_deltas.speed NN

avg       double NN

min       double NN

max       double NN

delta        double NN

Figure A.1: Database Schema
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Appendix B

User Testing Results: Playlist
Generation

This appendix shows the detailed results of the user testing for playlist generation from 5 different
playlist sources described in Section 4.2.1. It displays the plots of user vitals over the duration
of a workout, along with the point at which each track starts, marked by a red line. It also
includes a table of which tracks were played, and whether they’ve been heard by a user before in
the context and in general. The graphs for calories burned have been excluded for walking and
running workouts, since this vital had very small fluctuations, and therefore the graph did not
show anything useful.
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B.1 Osti Playlist

B.1.1 Running
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Figure B.1: User Vitals for a Running Workout to Osti Playlist

Position Track Name Track Artist BPM Known by
User in
Context

Known by
User

1 Dancing With Our
Hands Tied

Taylor Swift 160.024 Yes Yes

2 So Am I Ava Max, NCT 127 130.05 No Yes
3 Smooth Criminal

(Glee Cast Version)
Glee Cast, 2CEL-
LOS

135.043 Yes Yes

4 Black And White Niall Horan 147.589 No No
5 2U - R3HAB Remix David Guetta 144.978 Yes Yes
6 Call It What You

Want
Taylor Swift 163.954 Yes Yes

7 Sweet Melody Little Mix 119.965 No Yes

Table B.1: Tracks listened to for a Running Workout to Osti Playlist
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B.1.2 Walking
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Figure B.2: User Vitals for a Walking Workout to Osti Playlist

Position Track Name Track Artist BPM Known by
User in
Context

Known by
User

1 Wasabi Little Mix 114.001 Yes Yes
2 One Foot in Front

of the Other
Griff 112.043 Yes Yes

3 GUY.exe Superfruit 110.011 Yes Yes
4 MORE & MORE -

English Version
TWICE 106.998 Yes Yes

5 You Regard 106.064 Yes Yes
6 Confetti (feat.

Saweetie)
Little Mix 107.088 Yes Yes

7 Ciao Adios Anne-Marie 106.083 No Yes
8 Won’t Go Home

Without You
Maroon 5 110.022 No No

9 Love Me Again RAYE 110.063 No Yes

Table B.2: Tracks listened to for a Walking Workout to Osti Playlist
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B.1.3 Strength Training
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Figure B.3: User Vitals for a Strength Training Workout to Osti Playlist

Position Track Name Track Artist BPM Known by
User in
Context

Known by
User

1 Whole Lotta
Woman

Kelly Clarkson 119.982 Yes Yes

2 Electricity Silk City, Dua Lipa 118.159 Yes Yes
3 No Excuses Meghan Trainor 115.022 Yes Yes
4 Starstruck Years & Years 113.852 Yes Yes
5 Number 1 Tinchy Stryder 114.912 Yes Yes
6 Dynamite BTS 114.044 Yes Yes
7 Say So Doja Cat, Nicki Mi-

naj
111.004 Yes Yes

8 Forever & Always
(Piano Version)
(Taylor’s Version)

Taylor Swift 118.753 No Yes

9 I Don’t Want It At
All

Kim Petras 110.018 Yes Yes

Table B.3: Tracks listened to for a Strength Training Workout to Osti Playlist
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B.2 Spotify’s Soundtrack Your Workout Playlist

B.2.1 Running
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Figure B.4: User Vitals for a Running Workout to Spotify’s Soundtrack Your Workout Playlist

Position Track Name Track Artist BPM Known by
User in
Context

Known by
User

1 LUCID Rina Sawayama 125.98 No Yes
2 Rain On Me Lady Gaga, Ariana

Grande
123.056 Yes Yes

3 Motivation Normani 170.918 No Yes
4 Shout Out to My

Ex
Little Mix 126.014 No Yes

5 Safe With Me Gryffin, Audrey
Mika

169.902 No No

6 Feels In My Body Icona Pop 122.047 No Yes

Table B.4: Tracks listened to for a RunningWorkout to Spotify’s Soundtrack Your Workout Playlist
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B.2.2 Walking
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Figure B.5: User Vitals for a Walking Workout to Spotify’s Soundtrack Your Workout Playlist

Position Track Name Track Artist BPM Known by
User in
Context

Known by
User

1 Sweet Melody Little Mix 119.965 Yes Yes
2 Save Your Tears

(Remix)
The Weeknd, Ari-
ana Grande

118.091 Yes Yes

3 Look What You’ve
Done

Zara Larsson 117.915 Yes Yes

4 Leave Before You
Love Me

Marshmello, Jonas
Brothers

119.976 No No

5 My Head & My
Heart

Ava Max 116.001 No No

6 Forever FLETCHER 115.937 No No
7 Sad Songs Route 94, L Devine 123.986 No No
8 Malibu Kim Petras 120.018 Yes Yes
9 Feels In My Body Icona Pop 122.047 No Yes
10 Lifestyle Jason Derulo,

Adam Levine
123.055 No No

11 Summer Feelings Lennon Stella,
Charlie Puth

115.982 No No

Table B.5: Tracks listened to for a Walking Workout to Spotify’s Soundtrack Your Workout Playlist
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B.2.3 Strength Training
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Figure B.6: User Vitals for a Strength Training Workout to Spotify’s Soundtrack Your Workout
Playlist [23]

Position Track Name Track Artist BPM Known by
User in
Context

Known by
User

1 Rain On Me Lady Gaga, Ariana
Grande

123.056 Yes Yes

2 Shout Out to My
Ex

Little Mix 126.014 Yes Yes

3 Fallin’ (Adrenaline) Why Don’t We 133.963 No No
4 Malibu Kim Petras 120.018 No Yes
5 Birthday Anne-Marie 151.995 Yes No
6 Love Myself Hailee Steinfeld 122.924 Yes Yes
7 Ugly Heart G.R.L. 124.993 No No
8 She Looks So Per-

fect
5 Seconds of Sum-
mer

160.025 No Yes

9 Last Friday Night
(T.G.I.F.)

Katy Perry 126.023 No Yes

Table B.6: Tracks listened to for a Strength Training Workout to Spotify’s Soundtrack Your
Workout Playlist [23]
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B.3 User Hand-Curated Playlist

B.3.1 Running
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Figure B.7: User Vitals for a Running Workout to a User Hand-Curated Playlist

Position Track Name Track Artist BPM Known by
User in
Context

Known by
User

1 2U (feat. Justin
Bieber)

David Guetta 144.937 Yes Yes

2 Rain On Me Lady Gaga, Ariana
Grande

123.056 Yes Yes

3 UK Hun? (United
Kingdolls Version)

The Cast of Ru-
Paul’s Drag Race
UK, Season 2

134.038 No Yes

4 Up Cardi B 166 No Yes
5 Happiness Little Mix 125.932 Yes Yes
6 Decline RAYE 115.924 No Yes
7 WOW Zara Larsson 77.45 Yes Yes

Table B.7: Tracks listened to for a Running Workout to a User Hand-Curated Playlist
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B.3.2 Walking
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Figure B.8: User Vitals for a Walking Workout to a User Hand-Curated Playlist

Position Track Name Track Artist BPM Known by
User in
Context

Known by
User

1 Save Your Tears
(Remix)

The Weeknd, Ari-
ana Grande

118.091 Yes Yes

2 I Really Like You Carly Rae Jepsen 122.121 Yes Yes
3 The Motto Drake 201.8 Yes Yes
4 Bad 4 Us Superfruit 110.012 Yes Yes
5 Question Alex Aiono 100.029 Yes Yes
6 Into It Camila Cabello 108.77 Yes Yes
7 Tongue MNEK 106.456 Yes Yes
8 Never Really Over Katy Perry 99.991 Yes Yes
9 Look At Her Now Selena Gomez 77.342 Yes Yes

Table B.8: Tracks listened to for a Walking Workout to a Generic Workout Playlist (‘Walking
Music’ Playlist)
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B.3.3 Strength Training
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Figure B.9: User Vitals for a Strength Training Workout to a User Hand-Curated Playlist

Position Track Name Track Artist BPM Known by
User in
Context

Known by
User

1 Somebody Justin Bieber 75.991 Yes Yes
2 Heartbreak An-

them
Galantis, David
Guetta, Little Mix

124.111 Yes Yes

3 Right Here - Alok
Remix

Zara Larsson 121.973 Yes Yes

4 good 4 u Olivia Rodrigo 168.56 Yes Yes
5 Love Me Land Zara Larsson 216.334 Yes Yes
6 Don’t Play Anne-Marie 128.031 No Yes
7 Gonna Get This Hannah Montana 100.02 No Yes
8 All the Time Zara Larsson 101.976 Yes Yes
9 Valentino Years & Years 111.053 No Yes
10 MONOPOLY Ariana Grande,

Victoria Monét
143.96 No Yes

11 No Time For Tears Nathan Dawe, Lit-
tle Mix

125.009 Yes Yes

Table B.9: Tracks listened to for a Strength Training Workout to a User Hand-Curated Playlist
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B.4 Generic Workout Playlist

B.4.1 Running: ‘Fun Run’ Playlist
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Figure B.10: User Vitals for a Running Workout to a Generic Workout Playlist (‘Fun Run’ Playlist)

Position Track Name Track Artist BPM Known by
User in
Context

Known by
User

1 Black and White Niall Horan 147.589 No No
2 Stupid Love Lady Gaga 117.987 Yes Yes
3 Don’t Start Now Dua Lipa 123.95 No Yes
4 Sucker Jonas Brothers 137.958 No Yes
5 Youngblood 5 Seconds of Sum-

mer
120.274 No Yes

6 Somebody Dagny 117.981 No No
7 Don’t Call Me Up Mabel 98.994 No Yes

Table B.10: Tracks listened to for a Running Workout to a Generic Workout Playlist (‘Fun Run’
Playlist)
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B.4.2 Walking: ‘Walking Music’ Playlist
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Figure B.11: User Vitals for a Walking Workout to a Generic Workout Playlist (‘Walking Music’
Playlist)

Position Track Name Track Artist BPM Known by
User in
Context

Known by
User

1 The Winner Takes
It All

ABBA 126.15 No No

2 I’ve Done Every-
thing for You

Rick Springfield 161.512 No No

3 Don’t Stop Be-
lievin’

Journey 118.852 No No

4 Only Wanna Be
with You

Hootie & The
Blowfish

103.272 No No

5 Animals Maroon 5 189.868 No Yes
6 Won’t Go Home

Without You
Maroon 5 110.022 No No

7 Rhythm of Love /
Can’t Help Falling
in Love - EP Ver-
sion

Straight No Chaser 85.483 No No

Table B.11: Tracks listened to for a Walking Workout to a Generic Workout Playlist (‘Walking
Music’ Playlist)
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B.4.3 Strength Training: ‘Workout’ Playlist
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Figure B.12: User Vitals for a Strength Training Workout to a Generic Workout Playlist (‘Workout’
Playlist)

Position Track Name Track Artist BPM Known by
User in
Context

Known by
User

1 Met Him Last
Night

Demi Lovato, Ari-
ana Grande

144.978 Yes Yes

2 LazyBaby Dove Cameron 113.019 No No
3 good 4 u Olivia Rodrigo 168.56 Yes Yes
4 Overdrive Conan Gray 104.959 No Yes
5 BOY Madison Beer 121.122 No Yes
6 Not a Pop Song Little Mix 139.115 Yes Yes
7 test drive Ariana Grande 115.036 No Yes
8 Hold On Justin Bieber 140.002 No Yes
9 The Man Taylor Swift 110.048 No Yes
10 Obsessed Addison Rae 110.016 No No
11 Sacrifice Bebe Rexha 119.992 No No
12 Happiness Little Mix 125.932 Yes Yes

Table B.12: Tracks listened to for a Strength Training Workout to a Generic Workout Playlist
(‘Workout’ Playlist)
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Appendix C

User Testing Results: Real-Time
Recommendations

This appendix shows the detailed results of the user testing for real-time track recommendations
described in Section 4.2.2. It displays the plots of user vitals over the duration of a workout, along
with the point at which each track starts, where red lines represent a track which has started
naturally (either the initial track, or has started following the finishing of the previous track), and
yellow lines represent a track which was started due to the previous one being skipped. It also
includes a table of which tracks were played, at which time, whether they were skipped or not, and
whether they’ve been heard by a user before in the context and in general.
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C.1 Running
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Figure C.1: User Vitals for a Running Workout using the Osti real-time application

Start
Time
(secs)

Track Name Track
Artist

Tempo
(bpm)

Skipped Known
by User

in
Context

Known
by User

0 Dancing With Our
Hands Tied

Taylor Swift 160.024 Yes Yes Yes

40 2U - R3HAB Remix David
Guetta,
Justin
Bieber

144.978 Yes Yes Yes

120 Smooth Criminal
(Glee Cast Version)

Glee Cast,
2CELLOS

135.043 No Yes Yes

330 Don’t Play Anne-Marie 128.031 Yes No Yes
410 Call It What You

Want
Taylor Swift 163.954 No Yes Yes

600 Better Than Re-
venge

Taylor Swift 145.821 Yes No Yes

680 Everyday Ariana
Grande

131.004 No Yes Yes

860 Happiness Little Mix 125.932 No Yes Yes
1050 Don’t Start Now Dua Lipa 123.95 Yes No Yes
1090 Doctor You DNCE 123.022 No Yes Yes

Table C.1: Tracks listened to for a Running Workout using the Osti real-time application
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C.2 Strength Training
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Figure C.2: User Vitals for a Strength Training Workout using the Osti real-time application

Start
Time
(secs)

Track Name Track
Artist

Tempo
(bpm)

Skipped Known
by User

in
Context

Known
by User

0 Whole Lotta
Woman

Kelly Clark-
son

119.982 Yes Yes Yes

40 Not a Pop Song Little Mix 139.115 Yes Yes Yes
100 Everyday Ariana

Grande
131.004 Yes Yes Yes

150 Fearless (Taylor’s
Version)

Taylor Swift 100.118 No Yes Yes

390 1999 Charli XCX 124.016 Yes Yes Yes
500 Poster Girl Zara Larsson 119.907 Yes Yes Yes
580 The Story Of Us Taylor Swift 139.898 Yes No Yes
620 Hey Stephen (Tay-

lor’s Version)
Taylor Swift 115.99 No Yes Yes

790 Right Here Zara Larsson 120.043 Yes Yes Yes
900 The Way You Felt Alec Ben-

jamin
131.918 Yes Yes Yes

990 Overdrive Conan Gray 104.959 Yes No Yes
1040 Black Hole Griff 124.069 Yes Yes Yes
1160 Morning Zara Larsson 106.309 Yes Yes Yes
1250 New Me Ella Eyre 115.444 No Yes Yes
1390 Dynamite BTS 114.044 Yes Yes Yes
1430 LazyBaby Dove

Cameron
113.019 No No No

1570 Rain On Me Lady Gaga,
Ariana
Grande

123.056 Yes Yes Yes

1640 Don’t Let Me Be
Yours

Zara Larsson 112.067 Yes No Yes

1710 I Need Love Zara Larsson 135.948 Yes No Yes
1780 34+35 Ariana

Grande
109.978 No Yes Yes

Table C.2: Tracks listened to for a Strength Training Workout using the Osti real-time application
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